将MySQL去重 *** 作优化到极致的 *** 作方法

将MySQL去重 *** 作优化到极致的 *** 作方法,第1张

将MySQL去重 *** 作优化到极致的 *** 作方法 目录
  • 一、巧用索引与变量
    • 1. 无索引对比测试
    • 2. 建立created_time和item_name上的联合索引对比测试
  • 二、利用窗口函数
    • 三、多线程并行执行
      • 1. 数据分片
      • 2. 建立查重的存储过程
      • 3. 并行执行

    •问题提出

    源表t_source结构如下:

    item_id int,
     created_time datetime,
     modified_time datetime,
     item_name varchar(20),
     other varchar(20)

    要求:

    1.源表中有100万条数据,其中有50万created_time和item_name重复。
    2.要把去重后的50万数据写入到目标表。
    3.重复created_time和item_name的多条数据,可以保留任意一条,不做规则限制。

    •实验环境

    Linux虚机:CentOS release 6.4;8G物理内存(MySQL配置4G);100G机械硬盘;双物理CPU双核,共四个处理器;MySQL 8.0.16。

    •建立测试表和数据

    -- 建立源表
    create table t_source 
    ( item_id int, 
     created_time datetime, 
     modified_time datetime, 
     item_name varchar(20), 
     other varchar(20) 
    ); 
    -- 建立目标表
    create table t_target like t_source; 
    -- 生成100万测试数据,其中有50万created_time和item_name重复
    delimiter // 
    create procedure sp_generate_data() 
    begin 
     set @i := 1; 
     while @i<=500000 do 
     set @created_time := date_add('2017-01-01',interval @i second); 
     set @modified_time := @created_time; 
     set @item_name := concat('a',@i); 
     insert into t_source 
     values (@i,@created_time,@modified_time,@item_name,'other'); 
     set @i:=@i+1; 
     end while; 
     commit; 
     set @last_insert_id := 500000; 
     insert into t_source 
     select item_id + @last_insert_id, 
     created_time, 
     date_add(modified_time,interval @last_insert_id second), 
     item_name, 
     'other' 
     from t_source; 
     commit;
    end 
    // 
    delimiter ; 
    call sp_generate_data(); 
    
    -- 源表没有主键或唯一性约束,有可能存在两条完全一样的数据,所以再插入一条记录模拟这种情况。
    insert into t_source select * from t_source where item_id=1;
    
     源表中有1000001条记录,去重后的目标表应该有500000条记录。
    mysql> select count(*),count(distinct created_time,item_name) from t_source;
    +----------+----------------------------------------+
    | count(*) | count(distinct created_time,item_name) |
    +----------+----------------------------------------+
    | 1000001 |   500000 |
    +----------+----------------------------------------+
    1 row in set (1.92 sec)

    一、巧用索引与变量

    1. 无索引对比测试

    (1)使用相关子查询

    truncate t_target; 
    insert into t_target 
    select distinct t1.* from t_source t1 where item_id in 
    (select min(item_id) from t_source t2 where t1.created_time=t2.created_time and t1.item_name=t2.item_name);

    这个语句很长时间都出不来结果,只看一下执行计划吧。

    mysql> explain select distinct t1.* from t_source t1 where item_id in 
     -> (select min(item_id) from t_source t2 where t1.created_time=t2.created_time and t1.item_name=t2.item_name); 
    +----+--------------------+-------+------------+------+---------------+------+---------+------+--------+----------+------------------------------+
    | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra  |
    +----+--------------------+-------+------------+------+---------------+------+---------+------+--------+----------+------------------------------+
    | 1 | PRIMARY | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 997282 | 100.00 | Using where; Using temporary |
    | 2 | DEPENDENT SUBQUERY | t2 | NULL | ALL | NULL | NULL | NULL | NULL | 997282 | 1.00 | Using where  |
    +----+--------------------+-------+------------+------+---------------+------+---------+------+--------+----------+------------------------------+
    2 rows in set, 3 warnings (0.00 sec)

    主查询和相关子查询都是全表扫描,一共要扫描100万*100万数据行,难怪出不来结果。

    (2)使用表连接

    truncate t_target; 
    insert into t_target 
    select distinct t1.* from t_source t1, 
    (select min(item_id) item_id,created_time,item_name from t_source group by created_time,item_name) t2 
    where t1.item_id = t2.item_id;

    这种方法用时14秒,查询计划如下:

    mysql> explain select distinct t1.* from t_source t1, (select min(item_id) item_id,created_time,item_name from t_source group by created_time,item_name) t2 where t1.item_id = t2.item_id;
    +----+-------------+------------+------------+------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
    | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra  |
    +----+-------------+------------+------------+------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
    | 1 | PRIMARY | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 997282 | 100.00 | Using where; Using temporary |
    | 1 | PRIMARY | <derived2> | NULL | ref | <auto_key0> | <auto_key0> | 5 | test.t1.item_id | 10 | 100.00 | Distinct  |
    | 2 | DERIVED | t_source | NULL | ALL | NULL | NULL | NULL | NULL | 997282 | 100.00 | Using temporary |
    +----+-------------+------------+------------+------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
    3 rows in set, 1 warning (0.00 sec)

    •内层查询扫描t_source表的100万行,建立临时表,找出去重后的最小item_id,生成导出表derived2,此导出表有50万行。
    •MySQL会在导出表derived2上自动创建一个item_id字段的索引auto_key0。
    •外层查询也要扫描t_source表的100万行数据,在与导出表做链接时,对t_source表每行的item_id,使用auto_key0索引查找导出表中匹配的行,并在此时优化distinct *** 作,在找到第一个匹配的行后即停止查找同样值的动作。

    (3)使用变量

    set @a:='1000-01-01 00:00:00'; 
    set @b:=' '; 
    set @f:=0; 
    truncate t_target; 
    insert into t_target 
    select item_id,created_time,modified_time,item_name,other 
     from 
    (select t0.*,if(@a=created_time and @b=item_name,@f:=0,@f:=1) f, @a:=created_time,@b:=item_name 
     from 
    (select * from t_source order by created_time,item_name) t0) t1 where f=1;

    这种方法用时13秒,查询计划如下:

    mysql> explain select item_id,created_time,modified_time,item_name,other 
     -> from 
     -> (select t0.*,if(@a=created_time and @b=item_name,@f:=0,@f:=1) f, @a:=created_time,@b:=item_name 
     -> from 
     -> (select * from t_source order by created_time,item_name) t0) t1 where f=1; 
    +----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
    | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
    +----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
    | 1 | PRIMARY | <derived2> | NULL | ref | <auto_key0> | <auto_key0> | 4 | const | 10 | 100.00 | NULL |
    | 2 | DERIVED | <derived3> | NULL | ALL | NULL | NULL | NULL | NULL | 997282 | 100.00 | NULL |
    | 3 | DERIVED | t_source | NULL | ALL | NULL | NULL | NULL | NULL | 997282 | 100.00 | Using filesort |
    +----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
    3 rows in set, 5 warnings (0.00 sec)

    •最内层的查询扫描t_source表的100万行,并使用文件排序,生成导出表derived3。
    •第二层查询要扫描derived3的100万行,生成导出表derived2,完成变量的比较和赋值,并自动创建一个导出列f上的索引auto_key0。
    •最外层使用auto_key0索引扫描derived2得到去重的结果行。

    与上面方法2比较,总的扫描行数不变,都是200万行。只存在一点微小的差别,这次自动生成的索引是在常量列 f 上,而表关联自动生成的索引是在item_id列上,所以查询时间几乎相同。

    至此,我们还没有在源表上创建任何索引。无论使用哪种写法,要查重都需要对created_time和item_name字段进行排序,因此很自然地想到,如果在这两个字段上建立联合索引,利用索引本身有序的特性消除额外排序,从而提高查询性能。

    2. 建立created_time和item_name上的联合索引对比测试
    -- 建立created_time和item_name字段的联合索引
    create index idx_sort on t_source(created_time,item_name,item_id); 
    analyze table t_source;

    (1)使用相关子查询

    truncate t_target; 
    insert into t_target 
    select distinct t1.* from t_source t1 where item_id in 
    (select min(item_id) from t_source t2 where t1.created_time=t2.created_time and t1.item_name=t2.item_name);

    本次用时19秒,查询计划如下:

    mysql> explain select distinct t1.* from t_source t1 where item_id in 
     -> (select min(item_id) from t_source t2 where t1.created_time=t2.created_time and t1.item_name=t2.item_name); 
    +----+--------------------+-------+------------+------+---------------+----------+---------+----------------------------------------+--------+----------+------------------------------+
    | id | select_type | table | partitions | type | possible_keys | key | key_len | ref   | rows | filtered | Extra  |
    +----+--------------------+-------+------------+------+---------------+----------+---------+----------------------------------------+--------+----------+------------------------------+
    | 1 | PRIMARY | t1 | NULL | ALL | NULL | NULL | NULL | NULL   | 997281 | 100.00 | Using where; Using temporary |
    | 2 | DEPENDENT SUBQUERY | t2 | NULL | ref | idx_sort | idx_sort | 89 | test.t1.created_time,test.t1.item_name | 2 | 100.00 | Using index  |
    +----+--------------------+-------+------------+------+---------------+----------+---------+----------------------------------------+--------+----------+------------------------------+
    2 rows in set, 3 warnings (0.00 sec)

    •外层查询的t_source表是驱动表,需要扫描100万行。

    •对于驱动表每行的item_id,通过idx_sort索引查询出两行数据。

    (2)使用表连接

    truncate t_target; 
    insert into t_target 
    select distinct t1.* from t_source t1, 
    (select min(item_id) item_id,created_time,item_name from t_source group by created_time,item_name) t2 
    where t1.item_id = t2.item_id;

    本次用时13秒,查询计划如下:

    mysql> explain select distinct t1.* from t_source t1, 
     -> (select min(item_id) item_id,created_time,item_name from t_source group by created_time,item_name) t2 
     -> where t1.item_id = t2.item_id; 
    +----+-------------+------------+------------+-------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
    | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra  |
    +----+-------------+------------+------------+-------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
    | 1 | PRIMARY | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 997281 | 100.00 | Using where; Using temporary |
    | 1 | PRIMARY | <derived2> | NULL | ref | <auto_key0> | <auto_key0> | 5 | test.t1.item_id | 10 | 100.00 | Distinct  |
    | 2 | DERIVED | t_source | NULL | index | idx_sort | idx_sort | 94 | NULL | 997281 | 100.00 | Using index  |
    +----+-------------+------------+------------+-------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
    3 rows in set, 1 warning (0.00 sec)

    和没有索引相比,子查询虽然从全表扫描变为了全索引扫描,但还是需要扫描100万行记录。因此查询性能提升并不是明显。

    (3)使用变量

    set @a:='1000-01-01 00:00:00'; 
    set @b:=' '; 
    set @f:=0; 
    truncate t_target; 
    insert into t_target 
    select item_id,created_time,modified_time,item_name,other 
     from 
    (select t0.*,if(@a=created_time and @b=item_name,@f:=0,@f:=1) f, @a:=created_time,@b:=item_name 
     from 
    (select * from t_source order by created_time,item_name) t0) t1 where f=1; 

    本次用时13秒,查询计划与没有索引时的完全相同。可见索引对这种写法没有作用。能不能消除嵌套,只用一层查询出结果呢?

    (4)使用变量,并且消除嵌套查询

    set @a:='1000-01-01 00:00:00'; 
    set @b:=' '; 
    truncate t_target; 
    insert into t_target 
    select * from t_source force index (idx_sort) 
     where (@a!=created_time or @b!=item_name) and (@a:=created_time) is not null and (@b:=item_name) is not null 
     order by created_time,item_name;

    本次用时12秒,查询计划如下:

    mysql> explain select * from t_source force index (idx_sort) 
     -> where (@a!=created_time or @b!=item_name) and (@a:=created_time) is not null and (@b:=item_name) is not null 
     -> order by created_time,item_name;
    +----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-------------+
    | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
    +----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-------------+
    | 1 | SIMPLE | t_source | NULL | index | NULL | idx_sort | 94 | NULL | 997281 | 99.00 | Using where |
    +----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-------------+
    1 row in set, 3 warnings (0.00 sec)

    该语句具有以下特点:

    •消除了嵌套子查询,只需要对t_source表进行一次全索引扫描,查询计划已达最优。
    •无需distinct二次查重。
    •变量判断与赋值只出现在where子句中。
    •利用索引消除了filesort。

    在MySQL 8之前,该语句是单线程去重的最佳解决方案。仔细分析这条语句,发现它巧妙地利用了SQL语句的逻辑查询处理步骤和索引特性。一条SQL查询的逻辑步骤为:

    1.执行笛卡尔乘积(交叉连接)
    2.应用ON筛选器(连接条件)
    3.添加外部行(outer join)
    4.应用where筛选器
    5.分组
    6.应用cube或rollup
    7.应用having筛选器
    8.处理select列表
    9.应用distinct子句
    10.应用order by子句
    11.应用limit子句

    每条查询语句的逻辑执行步骤都是这11步的子集。拿这条查询语句来说,其执行顺序为:强制通过索引idx_sort查找数据行 -> 应用where筛选器 -> 处理select列表 -> 应用order by子句。

    为了使变量能够按照created_time和item_name的排序顺序进行赋值和比较,必须按照索引顺序查找数据行。这里的force index (idx_sort)提示就起到了这个作用,必须这样写才能使整条查重语句成立。否则,因为先扫描表才处理排序,因此不能保证变量赋值的顺序,也就不能确保查询结果的正确性。order by子句同样不可忽略,否则即使有force index提示,MySQL也会使用全表扫描而不是全索引扫描,从而使结果错误。索引同时保证了created_time,item_name的顺序,避免了文件排序。force index (idx_sort)提示和order by子句缺一不可,索引idx_sort在这里可谓恰到好处、一举两得。

    查询语句开始前,先给变量初始化为数据中不可能出现的值,然后进入where子句从左向右判断。先比较变量和字段的值,再将本行created_time和item_name的值赋给变量,按created_time、item_name的顺序逐行处理。item_name是字符串类型,(@b:=item_name)不是有效的布尔表达式,因此要写成(@b:=item_name) is not null。

    最后补充一句,这里忽略了“insert into t_target select * from t_source group by created_time,item_name;”的写法,因为它受“sql_mode='ONLY_FULL_GROUP_BY'”的限制。

    二、利用窗口函数

    MySQL 8中新增的窗口函数使得原来麻烦的去重 *** 作变得很简单。

    truncate t_target; 
    insert into t_target 
    select item_id, created_time, modified_time, item_name, other
     from (select *, row_number() over(partition by created_time,item_name) as rn
     from t_source) t where rn=1;

    这个语句执行只需要12秒,而且写法清晰易懂,其查询计划如下:

    mysql> explain select item_id, created_time, modified_time, item_name, other
     -> from (select *, row_number() over(partition by created_time,item_name) as rn
     -> from t_source) t where rn=1;
    +----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
    | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
    +----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
    | 1 | PRIMARY | <derived2> | NULL | ref | <auto_key0> | <auto_key0> | 8 | const | 10 | 100.00 | NULL |
    | 2 | DERIVED | t_source | NULL | ALL | NULL | NULL | NULL | NULL | 997281 | 100.00 | Using filesort |
    +----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
    2 rows in set, 2 warnings (0.00 sec)

    该查询对t_source表进行了一次全表扫描,同时用filesort对表按分区字段created_time、item_name进行了排序。外层查询从每个分区中保留一条数据。因为重复created_timeitem_name的多条数据中可以保留任意一条,所以oevr中不需要使用order by子句。

    从执行计划看,窗口函数去重语句似乎没有消除嵌套查询的变量去重好,但此方法实际执行是最快的。

    MySQL窗口函数说明参见“https://dev.mysql.com/doc/refman/8.0/en/window-functions.html”。

    三、多线程并行执行

    前面已经将单条查重语句调整到最优,但还是以单线程方式执行。能否利用多处理器,让去重 *** 作多线程并行执行,从而进一步提高速度呢?比如我的实验环境是4处理器,如果使用4个线程同时执行查重SQL,理论上应该接近4倍的性能提升。

    1. 数据分片

    在生成测试数据时,created_time采用每条记录加一秒的方式,也就是最大和在最小的时间差为50万秒,而且数据均匀分布,因此先把数据平均分成4份。

    (1)查询出4份数据的created_time边界值

    mysql> select date_add('2017-01-01',interval 125000 second) dt1,
     -> date_add('2017-01-01',interval 2*125000 second) dt2,
     -> date_add('2017-01-01',interval 3*125000 second) dt3,
     -> max(created_time) dt4
     -> from t_source;
    +---------------------+---------------------+---------------------+---------------------+
    | dt1   | dt2   | dt3   | dt4   |
    +---------------------+---------------------+---------------------+---------------------+
    | 2017-01-02 10:43:20 | 2017-01-03 21:26:40 | 2017-01-05 08:10:00 | 2017-01-06 18:53:20 |
    +---------------------+---------------------+---------------------+---------------------+
    1 row in set (0.00 sec)

    (2)查看每份数据的记录数,确认数据平均分布

    mysql> select case when created_time >= '2017-01-01' 
     ->  and created_time < '2017-01-02 10:43:20'
     ->  then '2017-01-01'
     ->  when created_time >= '2017-01-02 10:43:20'
     ->  and created_time < '2017-01-03 21:26:40'
     ->  then '2017-01-02 10:43:20'
     ->  when created_time >= '2017-01-03 21:26:40' 
     ->  and created_time < '2017-01-05 08:10:00'
     ->  then '2017-01-03 21:26:40' 
     ->  else '2017-01-05 08:10:00'
     ->  end min_dt,
     -> case when created_time >= '2017-01-01' 
     ->  and created_time < '2017-01-02 10:43:20'
     ->  then '2017-01-02 10:43:20'
     ->  when created_time >= '2017-01-02 10:43:20'
     ->  and created_time < '2017-01-03 21:26:40'
     ->  then '2017-01-03 21:26:40'
     ->  when created_time >= '2017-01-03 21:26:40' 
     ->  and created_time < '2017-01-05 08:10:00'
     ->  then '2017-01-05 08:10:00'
     ->  else '2017-01-06 18:53:20'
     ->  end max_dt,
     -> count(*)
     -> from t_source
     -> group by case when created_time >= '2017-01-01' 
     ->  and created_time < '2017-01-02 10:43:20'
     ->  then '2017-01-01'
     ->  when created_time >= '2017-01-02 10:43:20'
     ->  and created_time < '2017-01-03 21:26:40'
     ->  then '2017-01-02 10:43:20'
     ->  when created_time >= '2017-01-03 21:26:40' 
     ->  and created_time < '2017-01-05 08:10:00'
     ->  then '2017-01-03 21:26:40' 
     ->  else '2017-01-05 08:10:00'
     ->  end,
     -> case when created_time >= '2017-01-01' 
     ->  and created_time < '2017-01-02 10:43:20'
     ->  then '2017-01-02 10:43:20'
     ->  when created_time >= '2017-01-02 10:43:20'
     ->  and created_time < '2017-01-03 21:26:40'
     ->  then '2017-01-03 21:26:40'
     ->  when created_time >= '2017-01-03 21:26:40' 
     ->  and created_time < '2017-01-05 08:10:00'
     ->  then '2017-01-05 08:10:00'
     ->  else '2017-01-06 18:53:20'
     ->  end;
    +---------------------+---------------------+----------+
    | min_dt  | max_dt  | count(*) |
    +---------------------+---------------------+----------+
    | 2017-01-01  | 2017-01-02 10:43:20 | 249999 |
    | 2017-01-02 10:43:20 | 2017-01-03 21:26:40 | 250000 |
    | 2017-01-03 21:26:40 | 2017-01-05 08:10:00 | 250000 |
    | 2017-01-05 08:10:00 | 2017-01-06 18:53:20 | 250002 |
    +---------------------+---------------------+----------+
    4 rows in set (4.86 sec)

    4份数据的并集应该覆盖整个源数据集,并且数据之间是不重复的。也就是说4份数据的created_time要连续且互斥,连续保证处理全部数据,互斥确保了不需要二次查重。实际上这和时间范围分区的概念类似,或许用分区表更好些,只是这里省略了重建表的步骤。

    2. 建立查重的存储过程

    有了以上信息我们就可以写出4条语句处理全部数据。为了调用接口尽量简单,建立下面的存储过程。

    delimiter //
    create procedure sp_unique(i smallint) 
    begin 
     set @a:='1000-01-01 00:00:00'; 
     set @b:=' '; 
     if (i<4) then
     insert into t_target 
     select * from t_source force index (idx_sort) 
      where created_time >= date_add('2017-01-01',interval (i-1)*125000 second) 
      and created_time < date_add('2017-01-01',interval i*125000 second) 
      and (@a!=created_time or @b!=item_name) 
      and (@a:=created_time) is not null 
      and (@b:=item_name) is not null 
      order by created_time,item_name; 
     else 
     insert into t_target 
     select * from t_source force index (idx_sort) 
      where created_time >= date_add('2017-01-01',interval (i-1)*125000 second) 
      and created_time <= date_add('2017-01-01',interval i*125000 second) 
      and (@a!=created_time or @b!=item_name) 
      and (@a:=created_time) is not null 
      and (@b:=item_name) is not null 
      order by created_time,item_name; 
     end if; 
    end 
    //

    查询语句的执行计划如下:

    mysql> explain select * from t_source force index (idx_sort) 
     ->  where created_time >= date_add('2017-01-01',interval (1-1)*125000 second) 
     ->  and created_time < date_add('2017-01-01',interval 1*125000 second) 
     ->  and (@a!=created_time or @b!=item_name) 
     ->  and (@a:=created_time) is not null 
     ->  and (@b:=item_name) is not null 
     ->  order by created_time,item_name; 
    +----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-----------------------+
    | id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra   |
    +----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-----------------------+
    | 1 | SIMPLE | t_source | NULL | range | idx_sort | idx_sort | 6 | NULL | 498640 | 100.00 | Using index condition |
    +----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-----------------------+
    1 row in set, 3 warnings (0.00 sec)

    MySQL优化器进行索引范围扫描,并且使用索引条件下推(ICP)优化查询。

    3. 并行执行

    下面分别使用shell后台进程和MySQL Schedule Event实现并行。

    (1)shell后台进程

    •建立duplicate_removal.sh文件,内容如下:

    #!/bin/bash
    mysql -vvv -u root -p123456 test -e "truncate t_target" &>/dev/null 
    date '+%H:%M:%S'
    for y in {1..4}
    do
     sql="call sp_unique($y)"
     mysql -vvv -u root -p123456 test -e "$sql" &>par_sql1_$y.log &
    done
    wait
    date '+%H:%M:%S'

    •执行脚本文件

    ./duplicate_removal.sh

    执行输出如下:

    [mysql@hdp2~]$./duplicate_removal.sh
    14:27:30
    14:27:35

    这种方法用时5秒,并行执行的4个过程调用分别用时为4.87秒、4.88秒、4.91秒、4.73秒:

    [mysql@hdp2~]$cat par_sql1_1.log | sed '/^$/d'
    mysql: [Warning] Using a password on the command line interface can be insecure.
    --------------
    call sp_unique(1)
    --------------
    Query OK, 124999 rows affected (4.87 sec)
    Bye
    [mysql@hdp2~]$cat par_sql1_2.log | sed '/^$/d'
    mysql: [Warning] Using a password on the command line interface can be insecure.
    --------------
    call sp_unique(2)
    --------------
    Query OK, 125000 rows affected (4.88 sec)
    Bye
    [mysql@hdp2~]$cat par_sql1_3.log | sed '/^$/d'
    mysql: [Warning] Using a password on the command line interface can be insecure.
    --------------
    call sp_unique(3)
    --------------
    Query OK, 125000 rows affected (4.91 sec)
    Bye
    [mysql@hdp2~]$cat par_sql1_4.log | sed '/^$/d'
    mysql: [Warning] Using a password on the command line interface can be insecure.
    --------------
    call sp_unique(4)
    --------------
    Query OK, 125001 rows affected (4.73 sec)
    Bye
    [mysql@hdp2~]$

    可以看到,每个过程的执行时间均4.85,因为是并行执行,总的过程执行时间为最慢的4.91秒,比单线程速度提高了2.5倍。

    (2)MySQL Schedule Event

    •建立事件历史日志表

    -- 用于查看事件执行时间等信息
    create table t_event_history ( 
     dbname varchar(128) not null default '', 
     eventname varchar(128) not null default '', 
     starttime datetime(3) not null default '1000-01-01 00:00:00', 
     endtime datetime(3) default null, 
     issuccess int(11) default null, 
     duration int(11) default null, 
     errormessage varchar(512) default null, 
     randno int(11) default null
    );

    •为每个并发线程创建一个事件

    delimiter //
    create event ev1 on schedule at current_timestamp + interval 1 hour on completion preserve disable do 
    begin
     declare r_code char(5) default '00000'; 
     declare r_msg text; 
     declare v_error integer; 
     declare v_starttime datetime default now(3); 
     declare v_randno integer default floor(rand()*100001); 
     insert into t_event_history (dbname,eventname,starttime,randno) 
     #作业名 
     values(database(),'ev1', v_starttime,v_randno); 
     begin 
     #异常处理段 
     declare continue handler for sqlexception 
     begin 
      set v_error = 1; 
      get diagnostics condition 1 r_code = returned_sqlstate , r_msg = message_text; 
     end; 
     #此处为实际调用的用户程序过程 
     call sp_unique(1); 
     end; 
     update t_event_history set endtime=now(3),issuccess=isnull(v_error),duration=timestampdiff(microsecond,starttime,now(3)), errormessage=concat('error=',r_code,', message=',r_msg),randno=null where starttime=v_starttime and randno=v_randno; 
    end
    // 
    create event ev2 on schedule at current_timestamp + interval 1 hour on completion preserve disable do 
    begin
     declare r_code char(5) default '00000'; 
     declare r_msg text; 
     declare v_error integer; 
     declare v_starttime datetime default now(3); 
     declare v_randno integer default floor(rand()*100001); 
     insert into t_event_history (dbname,eventname,starttime,randno) 
     #作业名 
     values(database(),'ev2', v_starttime,v_randno); 
     begin 
     #异常处理段 
     declare continue handler for sqlexception 
     begin 
      set v_error = 1; 
      get diagnostics condition 1 r_code = returned_sqlstate , r_msg = message_text; 
     end; 
     #此处为实际调用的用户程序过程 
     call sp_unique(2); 
     end; 
     update t_event_history set endtime=now(3),issuccess=isnull(v_error),duration=timestampdiff(microsecond,starttime,now(3)), errormessage=concat('error=',r_code,', message=',r_msg),randno=null where starttime=v_starttime and randno=v_randno; 
    end
    // 
    create event ev3 on schedule at current_timestamp + interval 1 hour on completion preserve disable do 
    begin
     declare r_code char(5) default '00000'; 
     declare r_msg text; 
     declare v_error integer; 
     declare v_starttime datetime default now(3); 
     declare v_randno integer default floor(rand()*100001); 
     insert into t_event_history (dbname,eventname,starttime,randno) 
     #作业名 
     values(database(),'ev3', v_starttime,v_randno); 
     begin 
     #异常处理段 
     declare continue handler for sqlexception 
     begin 
      set v_error = 1; 
      get diagnostics condition 1 r_code = returned_sqlstate , r_msg = message_text; 
     end; 
     #此处为实际调用的用户程序过程 
     call sp_unique(3); 
     end; 
     update t_event_history set endtime=now(3),issuccess=isnull(v_error),duration=timestampdiff(microsecond,starttime,now(3)), errormessage=concat('error=',r_code,', message=',r_msg),randno=null where starttime=v_starttime and randno=v_randno; 
    end
    // 
    create event ev4 on schedule at current_timestamp + interval 1 hour on completion preserve disable do 
    begin
     declare r_code char(5) default '00000'; 
     declare r_msg text; 
     declare v_error integer; 
     declare v_starttime datetime default now(3); 
     declare v_randno integer default floor(rand()*100001); 
     insert into t_event_history (dbname,eventname,starttime,randno) 
     #作业名 
     values(database(),'ev4', v_starttime,v_randno); 
     begin 
     #异常处理段 
     declare continue handler for sqlexception 
     begin 
      set v_error = 1; 
      get diagnostics condition 1 r_code = returned_sqlstate , r_msg = message_text; 
     end; 
     #此处为实际调用的用户程序过程 
     call sp_unique(4); 
     end; 
     update t_event_history set endtime=now(3),issuccess=isnull(v_error),duration=timestampdiff(microsecond,starttime,now(3)), errormessage=concat('error=',r_code,', message=',r_msg),randno=null where starttime=v_starttime and randno=v_randno; 
    end
    //

    为了记录每个事件执行的时间,在事件定义中增加了 *** 作日志表的逻辑,因为每个事件中只多执行了一条insert,一条update,4个事件总共多执行8条很简单的语句,对测试的影响可以忽略不计。执行时间精确到毫秒。

    •触发事件执行

    mysql -vvv -u root -p123456 test -e "truncate t_target;alter event ev1 on schedule at current_timestamp enable;alter event ev2 on schedule at current_timestamp enable;alter event ev3 on schedule at current_timestamp enable;alter event ev4 on schedule at current_timestamp enable;"

    该命令行顺序触发了4个事件,但不会等前一个执行完才执行下一个,而是立即向下执行。这可从命令的输出可以清除看到:

    [mysql@hdp2~]$mysql -vvv -u root -p123456 test -e "truncate t_target;alter event ev1 on schedule at current_timestamp enable;alter event ev2 on schedule at current_timestamp enable;alter event ev3 on schedule at current_timestamp enable;alter event ev4 on schedule at current_timestamp enable;"
    mysql: [Warning] Using a password on the command line interface can be insecure.
    --------------
    truncate t_target
    --------------
    Query OK, 0 rows affected (0.06 sec)
    --------------
    alter event ev1 on schedule at current_timestamp enable
    --------------
    Query OK, 0 rows affected (0.02 sec)
    --------------
    alter event ev2 on schedule at current_timestamp enable
    --------------
    Query OK, 0 rows affected (0.00 sec)
    --------------
    alter event ev3 on schedule at current_timestamp enable
    --------------
    Query OK, 0 rows affected (0.02 sec)
    --------------
    alter event ev4 on schedule at current_timestamp enable
    --------------
    Query OK, 0 rows affected (0.00 sec)
    Bye
    [mysql@hdp2~]$

    •查看事件执行日志

    mysql> select * from test.t_event_history;
    +--------+-----------+-------------------------+-------------------------+-----------+----------+--------------+--------+
    | dbname | eventname | starttime  | endtime   | issuccess | duration | errormessage | randno |
    +--------+-----------+-------------------------+-------------------------+-----------+----------+--------------+--------+
    | test | ev1 | 2019-07-31 14:38:04.000 | 2019-07-31 14:38:09.389 |  1 | 5389000 | NULL  | NULL |
    | test | ev2 | 2019-07-31 14:38:04.000 | 2019-07-31 14:38:09.344 |  1 | 5344000 | NULL  | NULL |
    | test | ev3 | 2019-07-31 14:38:05.000 | 2019-07-31 14:38:09.230 |  1 | 4230000 | NULL  | NULL |
    | test | ev4 | 2019-07-31 14:38:05.000 | 2019-07-31 14:38:09.344 |  1 | 4344000 | NULL  | NULL |
    +--------+-----------+-------------------------+-------------------------+-----------+----------+--------------+--------+
    4 rows in set (0.00 sec)

    可以看到,每个过程的执行均为4.83秒,又因为是并行执行的,因此总的执行之间为最慢的5.3秒,优化效果和shell后台进程方式几乎相同。

    总结

    以上所述是小编给大家介绍的将MySQL去重 *** 作优化到极致的 *** 作方法,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对脚本之家网站的支持!
    如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

    欢迎分享,转载请注明来源:内存溢出

    原文地址: https://outofmemory.cn/sjk/892887.html

    (0)
    打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
    上一篇 2022-05-14
    下一篇 2022-05-14

    发表评论

    登录后才能评论

    评论列表(0条)

    保存