无缝空间数据库设计与构建

无缝空间数据库设计与构建,第1张

(一)问题的提出

塔里木河流域生态环境动态监测系统的运转需要大量的空间数据支持。在空间数据库构建前期,采集了塔里木河流域的各尺度基础地形图、生态环境专题图以及遥感影像资料等图形、图像数据,这些数据都是以分幅的成果进行收集和提交的,需要进入综合数据库中,以实现数据的共享。

我国国土版图大,而且大部分位于中、低纬度地区,因此我国现行的大于1∶50万比例尺的各种地形图都采用高斯-克里格投影即横切椭圆柱正形投影。经过高斯-克里格投影后的平面直角坐标系是以相切的经线(中央经线)的投影为X轴,以赤道的投影为Y轴。高斯-克里格投影具有以下特点:

(1)中央经线投影为直线,而且是投影的对称轴(也是投影平面的X轴);

(2)高斯-克里格投影是等角投影,投影后具有角度不变、伸长固定的特点(即同一地点各个方向的长度比不变),满足等角的要求;

(3)中央经线上长度没有变形,离中央经线越远变形越大。为了限制投影变形,必须进行分带投影。所谓分带就是按照一定的经度差,将椭球体按经线划分成若干个狭窄的区域,各个区域分别按高斯投影的规律进行投影,每一个区域就称为一个投影带。在每一个投影带内,位于各带中央的子午线就是轴子午线,各带相邻的子午线叫边缘子午线。分带之后,各带均有自己的坐标轴和原点,形成各自独立但又相同的坐标系统。根据国际通用方法,我国投影分带主要有两种:在我国1∶25万到1∶50万地形图均采用6°分带投影,1∶1万及更大比例尺的地形图采用3°分带投影,以保证投影变形误差满足地图的精度要求(王密等,2001)。

本系统所采集到的数据产品的空间参考大都是以高斯投影后的平面坐标为基础的分幅数据。塔里木河流域地域广阔,地理坐标介于东经73°10'~94°05',北纬34°55'~43°08'之间,以1∶10万基础地形图数据为例,按照高斯投影后的坐标分成了13°、14°、15°、16°四个6°高斯投影带,每个带的坐标都是以本带的坐标原点为参考点,空间基准不统一,如果将这些数据直接进行入库,将在跨带处产生缝隙,不能形成逻辑意义上完整的河流表现,也无法完成基于整个流域的生态环境分析,因此,必须采用相应的数据处理与建库技术,实现塔河整个流域数据的无缝集成管理,使之形成统一的整体。从基础数据的获取开始,进行精心设计和组织,分离出数据物理层和数据逻辑层,在统一的空间框架之下,将物理层归化到逻辑层,以消除逻辑层的缝隙,从而实现用户级的逻辑无缝空间数据库。

(二)无缝数据库

随着GIS数据发布与共享技术的发展,无缝空间数据库逐渐分化出两个层次的含义:一是GIS系统内部的数据无缝,一是不同GIS实现互 *** 作时的数据无缝。前者是通常意义的无缝,后者主要通过数据标准化与 *** 作标准化来实现。无缝空间数据库的最终含义体现在逻辑无缝数据库。无论是多源还是单源、同构还是异构,跨越数据层呈现在用户面前的GIS空间数据库必须是逻辑无缝的。

空间数据的无缝连接是一个建立在用户与数据库接口基础上的概念,意味着GIS管理的数据不再是单一、被硬性割裂的图幅,而是范围更加广阔的区域,这个区域小可到一个城市,大可到一个国家甚至整个地球(王卉、王家耀,2004)。由于硬软件条件的限制,计算机系统尚不能同时处理海量的空间数据,因此从具体技术的实施上,可采用将空间数据分块存储于数据库中,数据库提供相应的图块拼接信息。物理上空间数据是有缝隙的,但空间数据库提供图块之间的接图信息及相应的拼接访问手段,保障了空间数据在使用上的空间连贯性,即数据在逻辑使用上是无缝的(王密等,2001)。

(三)缝隙产生原因

在现实世界中,地理空间是由地貌、地物组成的连续的表层空间,地理信息则是有关地理空间的一切有用的知识。在计算机世界中,地理信息通过抽象、建模形成数字化的表示形式,通过空间数据库来进行表达、存储和管理(朱欣焰等,2002)。空间地理数据缝隙是在数据的获取、表示与处理过程中产生的数据不连续现象。

1数据源

由于历史和现实的原因,地图是绝大多数GIS系统直接的数据源。地图是地球三维椭球面的二维平面表达,本身对真实世界有扭曲;地图是对连续空间的割裂表达,实体被分割到不同的地图空间中去;高斯投影是基本比例尺地形图经常选用的投影,也是绝大多数GIS系统的数学基础,由于分带的原因,使得投影后带有高斯投影平面坐标的地图无法实现无缝拼接。

2数据表达与组织方式

空间地理几何数据的表示主要有栅格和矢量两种不同的形式。栅格形式是将地理表层空间划分为一系列网格,空间目标由这些网格的位置及其量化值来表示,这些网格本身就是连续空间信息的离散表达。矢量形式则是将地理空间的一切事物、概念进行抽象,形成点、线、面,由点、线、面来组成各类空间目标。按点、线、面来分类和按分层的思想来组织空间数据,也割裂了实体之间内在的联系。

在空间数据库组织与管理上,目前主要有文件型、文件与关系数据库混合型、全关系型以及对象关系型。传统的文件型空间数据库、文件与关系混合型空间数据库,按图幅或一定的区域范围以文件的形式来组织与存储空间几何数据,不同的图幅或区域之间存在缝隙。在文件与关系数据库混合型的空间数据库中,空间几何数据贮存在文件中,属性数据贮存在关系数据库中,属性数据和几何数据之间通过内部标识来链接,空间几何数据和属性数据之间存在缝隙。

3数据处理

数据处理的过程中也会引入缝隙,产生这种缝隙的原因有:①数据处理过程的顺序不一致;②选择的处理参数不一致;③数字化的精度不一致。

4多源异构数据共享

数据属性(数学基础、比例尺、用途、时间、精度等)的不同,导致了数据的差异,这些差异是多层次和多方面的,它们集中体现了数据的异构。数据异构和多源往往是一体的,多源异构是系统内部和系统之间数据裂隙的主要原因(刘仁峰,2005)。

(四)数据缝隙类别和表现

数据缝隙基本可以分为物理缝隙和逻辑缝隙两类。物理缝隙是地理空间的分离存储,本来连续的实体空间被分离到不同的存储空间和存储单元中去,例如空间数据的分幅、分层存储。逻辑缝隙是指逻辑上本身连续的信息不能以逻辑连续的方式呈现,例如跨越多幅图的一条河流,在图幅内查询河流属性(如长度)时只能获取其在本图幅内的相关信息而不是实体整体的信息。显然,由于空间信息本身的海量特性,要完全意义上的实现物理无缝的空间数据库目前还是不可能的,也没有必要。GIS用户关心的不是空间数据是物理无缝,因为GIS呈现给用户的是数据逻辑层,只需要保证用户看到的数据是逻辑无缝的。

物理有缝的数据库向逻辑无缝数据库的转换是无缝空间数据库构建的重要一环。

(五)无缝镶嵌技术

数据的无缝连接包含以下几个问题:投影、坐标系统、比例尺、数据精度等。对不同投影和坐标系统的空间数据在投影和坐标系统上统一采用相同的标准,当空间数据具有多尺度时,无缝连接寻找数据集之间连续的表达方式,它表现为不同尺度数据之间的集成。建立无缝空间数据的关键在于在合适的空间信息框架上实现多源异构空间数据的融合,框架是基础,融合是手段。

1合适的空间框架选择

(1)适合多尺度信息表达。地球是一个开放的非常复杂的巨大系统,随着观察视角的变化,我们希望空间地理信息比例尺也自动增减。由于地图的自动综合受诸多因素的影响,目前比较可行的是采用多尺度空间数据支持来达到目的。所谓多尺度就是指系统内包含几种不同比例尺(或分辨率)的空间数据,其目的是为了适度地反映系统所关心区域的空间地理信息,以避免地物信息的过粗、失真或地物信息的负载量过大而无法使用。无缝空间数据库也应该符合多尺度空间数据库要求。

(2)适合大区域表达。各种自然和人文现象的空间分布,有其内在的原因和规律,这些原因和规律的获得,往往需要研究大区域多因素的综合作用;另一方面,对于全球范围的环境变异和气候变迁的研究需要基于数字地球的空间框架。大区域的表达,还涉及空间尺度问题,不应继续采用欧氏空间尺度,而应该采用大地线尺度空间。

2多源异构空间数据的融合

(1)GIS的迅速发展和广泛应用导致了多源空间数据的产生。如何实现不同的GIS软件共享并 *** 作不同来源的地理数据,即GIS多源空间数据的集成,成为GIS发展的关键。目前GIS多源空间数据的集成主要朝着三个方向发展,一是通过建立统一的数据交换标准来约束并规范已有的各类地理信息系统,采用数据交换标准来进行空间数据交换;二是建立开放式地理数据互 *** 作规范,进行地理信息系统互 *** 作;三是GIS数据中间件技术。

(2)统一数据交换标准存在很多实现上的困难。互 *** 作是一个重要发展趋势,是在异构分布式数据库中实现信息共享的途径,它需要将GIS技术、分布处理技术、面向对象方法、数据库设计及实时信息获取方法更有效地结合起来。所谓GIS数据中间件技术是指能够嵌入各类GIS系统的软件,GIS开发者通过中间件开发商提供的接口,访问和 *** 作特定的数据源。

(3)在多源异构数据集成技术尚未成熟的时候,人们再次把目光投向数据本身,如果可以提供关于数据的详细描述,是否可以提高融合数据的能力呢于是,对于“关于数据的数据”的研究,即对于元数据的研究便普遍展开。从DublinCore到CSDGM与OGC,都提出了相应的元数据标准体系,有了完整而完善的元数据描述,必将提高数据的效能,从而最终促进多源异构数据库向无缝空间数据库的归化。

为实现塔河整个流域数据的无缝集成管理,使之形成统一的整体,设计从缝隙产生的地方开始,分离出数据物理层和数据逻辑层,在统一的空间框架之下,将物理层归化到逻辑层,以消除逻辑层的缝隙,从而实现用户级的逻辑无缝空间数据库;同时制定统一的数据提交规范,如所有矢量数据在入库前统一采用经纬度坐标,栅格数据统一提供两套数据,即高斯坐标和经纬度坐标,以满足不同用户的管理需求和精度要求。

空间数据库指的是地理信息系统在计算机物理存储介质上存储的与应用相关的地理空间数据的总和,一般是以一系列特定结构的文件的形式组织在存储介质之上的。《空间数据库》范围及重点 1 第一章:绪论 1) 空间数据库基本概念、组成部分、名称简写之间的联系与区别与联系; 答;利用当代的系统方法,在地理学、地图学原理的指导下,对地理空间进行科学的认识与抽象,将地理数据库化为计算机处理时所需的形式与结构,形成综合性的信息系统技术——空间数据库 或者SDBMS是海量SD的存储场所、提供SD处理与更新、交换与共享,实现空间分析与决策的综合系统。 组成:存储系统、管理系统、应用系统 是SDBS的简称 2) 目前空间数据库实现方案; ORDBMS 3) GIS,RS与空间数据库之间的联系; 4) 常见的空间数据库产品 轻量级: MS的Access、FoxPro、 SUN的MySQL 中等:MS的SQL Server系列 重量级:Oracle的Oracle 不太熟悉的有: Sybase、Informix、DB2 、Ingress、 PostgreSQL(PG)等 5) 产生空间数据库的原因; 直接利用? SD特征 :空间特性 非结构化特征 空间关系特征 多尺度与多态性 海量数据特性 存在的问题:复杂图形功能:空间对象 复杂的空间关系 数据变长记录 6)空间数据库与普通关系数据库的主要区别。 关系数据库管理属性数据,空间数据采用文件库或图库形式;增加大二进制数据类型(BLOB),解决变长数据存储问题;将空间数据/属性数据全部存放在数据库中;但空间特性由程序处理 2 第二章:空间数据库模型 1) 如何理解空间数据库模型; 2) 空间数据及空间关系; 8222; (1) 空间数据类型 几何图形数据 影像数据 属性数据 地形数据 元数据:对空间数据进行推理、分析和总结得到的关于数据的数据, 数据来源、数据权属、数据产生的时间 数据精度、数据分辨率、元数据比例尺 地理空间参考基准、数据转换方法… (2) 空间关系 指地理空间实体之间相互作用的关系: 拓扑关系:形状、大小随投影改变。在拓扑变换下不变的拓扑变量,如相邻、包含、相交等,

反映空间连续变化的不变性 方位关系:地理空间上的排列顺序,如前后、上下、左右和东、南、西、北等方位 度量关系:距离远近等 3) 空间数据库如何建模; DB设计三步骤 8249; Conceptual Data Model:与应用有关的可用信息组织、数据类型、联系及约束、不考虑细节、E-R模型 Logic Data Model 层次、网状、关系,都归为关系,SQL的关系代数(relational algebra, RA) Physical Data Model:解决应用在计算机中具体实现的各种细节,计算机存储、数据结构等 4) 模型之间如何转换? 5) 可行的空间数据库建模方案。 面向对象的空间数据库模型GeoDatabase 3 第三章:空间数据库存储与索引 1) 空间数据如何组织、存储的,采用什么技术或者方法; 为有效表达空间信息内容,空间数据必须按照一定的方式进行组织与存储:适合外存 *** 作的数据结构、记录和文件的多种组织方式 SDB空间数据组织:数据项、记录、文件、数据库 SDB空间数据存储:二级存储器、缓冲区管理器、空间聚类(clustering)、空间索引 2) 空间近似与空间聚类; 目的:降低响应大查询的寻道时间和等待时间,在二级存储中空间上相邻的/查询上有关联的空间对象在物理上存放在一起, 内部聚类(internal clustering):加快单个对象的访问,一个对象都存放在一个磁盘块(页面);如超出则存放在连续扇区,本地聚类(local clustering):加快多个对象访问。一组空间相邻对象存放在一个页面 空间聚类比传统聚类技术复杂。多维空间对象无天然的顺序 磁盘:一维存取,高维:将高维映射到一维, 一一对应,保持距离(distance preserving):一一对应,容易;距离不变,近似,映射技术、Z序(z-order)、Hilbert曲线 3) 空间数据库性能提升的关键问题是什么?如何提升; 数据库索引,基于树:ISAM、B树、B 树等,基于Hash:静态、可扩展、线性等 4) 空间索引技术是什么?为什么产生?有哪些常见的空间索引;各有何特点及适用范围? 依据空间对象的位置和形状或者空间对象之间的空间关系,按一定顺序排列的一种数据结构,介于空间 *** 作算法和空间对象之间,通过筛选,大量与特定空间 *** 作无关的空间对象被排除,提高效率,空间数据库关键的技术 空间索引产生的原因:空间数据的特点:空间定位、空间关系、多维、多尺度、海量、复杂,传统数据库索引处理的一维的字符、数字,对多维处理采用组合字段 1、基于二叉树的索引技术:二分索引树结构主要用于索引多维数据点;对复杂空间目标(线、面、体等)的索引却必须采用近似索引方法和空间映射技术 2、 基于B树的索引技术 8249;B树的变体如R树系列,外包矩形;对大型数据库具有出色表现;需要解决:减少区域重叠,提高搜索效率 3、基于哈希的网格技术

gis空间数据包括以下几方面内容: (1)地理实体的空间特征、属性特征及时间特征 (2)空间数据的抽象:点,线,面 (3)空间数据的表达:矢量、栅格数据结构 (4)空间数据库管理系统 按来源分为: 地图数据 影像数据: 遥感 地形数据:

是彻底不同的两个概念

数据库是用户 *** 作的所有数据要保存在数据库,由网站后台程序进行读写。

网站空间是保存网站程序和数据库的硬盘空间

网站程序以文件的形式存在,文件存在磁盘上,占用一定的磁盘空间

数据库也以文件的形式存在,文件存在磁盘上,也占用一定的磁盘空间

专业代码、名称及研究方向 计划招生人数 考 试 科 目 备 注

214测绘学院

(68778815) 85

070801固体地球物理学

01 地球重力场理论及应用

02 卫星重力及其应用

03 月球重力场的理论及应用

04 卫星重力学及应用

05 大地测量和地球重力场地球物理反演理论及应用

06 地球动力学数值模拟及应用

07 地壳运动与变形分析

08 地下工程地震预报

09 地震勘探

10 重力、地磁勘探技术及应用

11 电法勘探技术及应用

①101政治理论

②201英语或202俄语或212德语

③301数学一

④929重力学 复试采用笔试和口试相结合的方法进行,笔试的科目为:地球物理学原理

同等学力和跨学科加试科目:①地球概论②大学物理

081601大地测量学与测量工程

01 卫星导航定位技术及其应用

02 组合导航

03 基于位置服务

04 卫星定轨

05 现代测量数据处理理论与方法

06 现代大地测量基准建立与维持

07 物理大地测量学

08 深空大地测量学

09 海洋测绘

10 卫星重力测量理论及应用

11 地球物理大地测量

12 空间数据质量与挖掘

13 精密工程测量

14 变形监测分析

15 工业测量

16 移动测量与测量自动化

17 数近景摄影测量

18 地下工程测量

19 灾害监测评估与预警

20 工程测量专用仪器与软件

21 激光雷达数据处理及应用

22 新型遥感影像数据处理理论与方法

23 真三维景观影像建模

24 超分辨图像复原技术

25 数字摄影测量理论与方法

26 遥感信息处理与应用

27 图像测量

28 地理信息系统及应用

29 极地测绘

①101政治理论

②201英语或202俄语或212德语

③301数学一

④930大地测量学基础或931计算机基础 复试采用笔试和口试相结合的方法进行,笔试的科目为:测绘学概论

同等学力和跨学科加试科目:①测量学②GPS原理与应用

★081620 城市空间信息工程

01 城市地理空间框架与维持

02 数字城市理论与应用

03 城市公共安全应急管理

04 电子政务公共空间信息平台

05 城市不动产管理与评估

06 城市地下管网信息系统

07 城市虚拟现实技术与应用

08 城市空间信息智能服务

09 城市空间信息处理理论与应用 ①101政治理论

②201英语或202俄语或212德语

③301数学一

④932地理信息系统原理与应用 复试采用笔试和口试相结合的方法进行,笔试的科目为:GPS原理与应用或摄影测量与遥感

同等学力和跨学科加试科目:①数字测图原理与方法②数据库原理

214 测绘学院

初试科目考试内容及范围 :

1、《大地测量学基础》考试范围及内容

1) 大地测量学的大地测量学的发展简史及展望

2) 坐标系统与时间系统

3) 地球重力场及地球形状的基本理论

4) 地球椭球及其数学投影变换的基本理论

5) 大地测量基本技术与方法

1) 了解大地测量学的基本概念、发展简史及未来展望,熟习经典大地测量与现代大地测量的区别,掌握大地测量学的定义和内容。

2) 了解行星运动的三大规律,掌握岁差、章动、极移;恒星时、世界时、历书时、力学时、原子时、协调世界时的概念,以及它们之间的相互关系。

3) 了解坐标系统的基本概念,参心坐标系的建立方法,一点定位和多点定位的基本原理;了解北京54坐标系、80坐标系、新北京54坐标系的主要特点及其相互联系与区别;了解地心坐标系的建立方法,掌握国际地球参考系统(ITRS)与国际地球参考框架(ITRF)的概念;熟练掌握几种坐标系统的定义以及其相互换算关系;

4) 掌握地球重力位、地球重力、正常重力位、正常重力的概念及正常椭球、水准椭球、总地球椭球、参考椭球的概念;

5) 掌握正高系统、正常高系统、力高高程系统的概念;熟练掌握国家高程基准;

6) 掌握垂线偏差和大地水准面差距的定义与测定方法以及确定地球形状的基本方法。

7) 熟练掌握地球椭球的基本元素及其相互关系;熟练掌握椭球面上几种常用坐标系及其相互关系;熟练掌握空间大地坐标系与空间直角坐标系之间相互转换的计算;

8) 熟练掌握椭球面上的几种曲率半径(子午线、卯酉线、任意法截线、平均曲率半径)的计算;熟练掌握椭球面上子午线弧长计算公式与子午线弧长求大地纬度的计算方法;了解椭球面梯形图幅面积的计算;

9) 熟练掌握大地线的定义,相对法截线的概念;熟练掌握大地线微分方程和克莱劳方程;

10) 熟练掌握大地主题正反算的定义;

11) 了解地图数学投影的基本概念;掌握地图数学投影的分类;熟练掌握高斯平面直角坐标系的定义与建立方法;掌握平面子午线角、方向改化、距离改化的定义及其计算;熟练掌握高斯投影的邻带换算方法;掌握横轴墨卡托(UTM)投影与兰勃特投影基本概念。

12) 了解国家大地控制网建立的基本原理及其方法,掌握现代大地测量技术(GPS、VLBI、INS、SLR)的概念;了解现代测量技术建立国家大地测量控制网的概况;

13) 掌握大地控制网与优化设计概念与方法,可靠性的概念,优化设计的分类;

14) 熟练掌握测角的主要误差来源,精密测角方法(方向观测法)及其限差要求;了解归心改正;

15) 熟练掌握测距的基本原理,距离改正方法,测距的主要误差来源以及测距精度的评定方法;

16) 熟练掌握精密水准测量误差来源;

17) 理解与掌握大地测量数据处理的理论与方法;

2、《计算机基础》考试范围及内容

1 数据结构绪论:数据结构的相关概念、算法及算法分析。

2 线性表:线性表及其逻辑结构、线性表的顺序存储结构、线性表的链式存储结构、线性表的应用。

3 栈:栈的定义、栈的顺序存储结构及其基本运算实现、栈的链式存储结构及其基本运算的实现、栈的应用。

4 队列:队列的定义、队列的顺序存储结构及其基本运算实现、队列的链式存储结构及其基本运算的实现、队列的应用。

5 串:串的基本概念、串的顺序和链式存储结构。

6 数组和稀疏矩阵:数组的基本概念、数组的存储结构、特殊矩阵的压缩存储;稀疏矩阵的三元组表示。

7 递归:递归的概念、递归算法的设计。

8 树和二叉树:树的基本概念、二叉树概念和性质、二叉树存储结构、二叉树的基本运算及其实现、二叉树的遍历、二叉树的构造和哈夫曼树。

9 图:图的基本概念、图的存储结构、图的遍历、生成树和最小生成树、最短路径和拓扑排序。

10 查找:查找的基本概念、线性表的查找、树表的查找、哈希表查找。

11 内排序:排序的基本概念、插入排序、交换排序、选择排序、归并排序、基数排序、各种内排序方法的比较和选择。

3、《重力学》考试范围及内容

《地球重力学》是地球物理专业的基础课程;其主要任务是研究地球形状、外部重力场、地球内部构造、板块运动及变形的科学;要求学生掌握地球重力场的基本概念、重力测量的原理与方法,重力数据的预处理方法和分析方法;重力正反演与地球内部物质构造的研究方法;大地水准的理论与确定方法。

4、《地理信息系统原理及应用》考试范围及内容

考试目的

地理信息系统是一门处理、分析和表达空间信息并具有多学科交叉特征的新兴学科,是许多相关学科专业的基础课程,也是空间信息科学的重要研究方向。本大纲适用于测绘学院城市空间信息工程方向硕士生入学考试,要求考生对地理信息系统基本概念有较深入的理解,能够系统地掌握空间数据处理、空间数据模型、空间信息分析的基本理论与方法,理解地理信息系统的主要工程化技术,并具有综合地理信息系统分析问题和解决问题的能力。

考试内容

1地理信息系统概论

(1)基本概念:信息、数据、地理数据、地理信息、信息系统、地理信息系统与其它信息系统间的关系

(2)地理信息系统及其类型:地理信息系统,地理信息系统类型,地理信息系统的构成

(3)地理信息系统的主要功能及发展趋势

2地理信息系统中的数据和数据模型

(1)数据涵义和数据类型:数据涵义,数据类型,空间数据的表示方法

(2)数据的测量尺度:命名量,次序量,间隔量,比率量

(3)地理信息系统的数据质量:基本概念,误差分析,质量控制

(4)空间数据的元数据:元数据概念、类型、应用,元数据的获取、管理,元数据的存储和功能实现

(5)空间参照系:坐标系统、地图投影

(6)空间数据模型:空间数据模型的类型、要素模型、场模型、网络模型、时空模型、三维模型

(7)空间关系:拓朴关系、度量关系、方向关系

3空间数据获取

(1)地图数字化:地图数字化、扫描矢量化算法、矢量和栅格数据压缩方法

(2)空间数据录入后的处理:坐标变换、拓朴关系自动生成算法

4空间数据管理

(1)空间数据库的基本概念:空间数据库,数据与文件组织,GIS的内部数据结构

(2)栅格数据结构及其编码:栅格数据结构,决定栅格单元代码的方法,编码方法

(3)矢量数据结构及其编码:矢量数据结构,编码方法

(4)矢栅结构的比较及转换算法

(5)空间索引机制与空间信息查询:索引概念,索引类型,空间信息查询

5空间查询与空间分析

(1)空间查询与量算:空间查询类型、空间量算类型

(2)空间变换与再分类

(3)典型空间分析:缓冲区分析、叠加分析、网络分析

(4)空间插值

(5)空间统计分析方法

(6)数字地形模型与地形分析:数字地形模型DTM、数字高程模型DEM、DEM的主要表示方法、DEM之间的相互转换、DEM的建立方法、DEM的分析应用

6空间数据表现与地图制图

(1)专题信息表现:地图符号、专题信息、专题地图的分类和内容,专题图的表现形式

(2)专题地图设计

(3)地理信息的可视化:基本概念,地学可视化的类型,虚拟地理环境

7地理信息系统的相关知识

(1)空间建模的基本概念:空间分析过程及模型、空间决策支持模型、专家系统、数据仓库与空间数据挖掘

(2)3S集成:遥感,全球定位系统,遥感与GIS的集成,全球定位系统与GIS的集成,3S集成

(3)网络GIS的基本概念

(4)GIS开发的基本方法:常用开发方法、一般开发过程

以上就是关于无缝空间数据库设计与构建全部的内容,包括:无缝空间数据库设计与构建、如何加快clustering过程、空间数据库主要包含哪几方面等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/sjk/9297884.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存