如何在国土资源管理中构建地理信息系统

如何在国土资源管理中构建地理信息系统,第1张

基础地理空间框架建设是充分运用全球导航卫星系统(GNSS)、遥感(RS)、地理信息系统(GIS)和计算机网络等技术,制定相应的政策法规和标准体系,建立基础地理数据获取与更新、处理与管理、分发与服务的信息化体系,为建设多尺度、多分辨率、多种类的北京市空间数据体系和统一的北京市地理空间数据基础平台奠定基础,从而为城市政府、行业、社区和公众提供高质量的基于空间位置的应用服务,满足北京城市规划、发展、建设、运行、服务、管理的需要。

进入21世纪以来,北京市基础地理空间框架实现了从最初的传统模拟测绘技术体系向数字化测绘技术体系的跨越式发展,正朝着信息化测绘技术体系的方向快速推进,逐步形成了北京市基础地理空间框架的管理体系、标准体系和技术体系。20多年来,为北京市城市总体规划、城市建设重点工程、奥运工程、信息化城市管理,以及人民群众的工作生活,提供了及时、可靠、适用的测绘服务与保障。

一、基础地理空间框架建设现状

(一)数字化测绘生产体系的建立。从20世纪80年代开始,北京市测绘设计研究院(以下简称:北京院)率先开展了一系列数字化测绘生产体系的研究与建立工作,包括:大比例尺工程图机助成图系统的开发、北京市地下管网图形数据库系统的建设、全球卫星定位系统(GPS)技术的应用、数字化测绘生产工艺流程设计、北京市基础测绘信息4D系统产品体系的研究等,这些研究成果为数字化测绘体系的建设以及北京市基础地理空间框架的建设奠定了坚实的技术基础。

(二)北京市基础地理空间框架管理机制基本形成。随着数字化测绘生产体系的建立和完善,对建立相关的管理体系和法规体系的需求也越发强烈。北京市地理信息中心的成立、基础测绘工作纳入北京市国民经济和社会发展计划、ISO9001质量管理体系的建立、《北京市基础测绘更新规划方案》的制定以及《北京市测绘条例》的颁布等一系列举措,使得北京市的测绘事业逐步适应社会主义市场经济的管理体制,测绘队伍不断壮大,基础测绘的良性循环得到了保障,并为北京市基础地理空间框架建设的管理工作提供了法规保障。

(三)北京市基础地理空间框架技术体系初步建立。“十五”期间,北京市基础地理空间框架技术体系的建设逐步落实。国家基础测绘设施项目北京市单位工程按要求完成,各项技术指标达到并超过了《实施方案》的设计目标;依据《北京市测绘条例》,《北京市地方测绘技术系列标准》的编写工作基本完成;北京市基础地理空间框架基准体系建设的项目成果通过了专家鉴定;《北京市“十一五”时期测绘事业发展规划》列入市政府专项规划,有力地推动了北京市测绘事业的发展。

二、北京市基础地理空间框架数据与技术服务成果

(一)基础地理空间框架数据建设。

1.北京地形图分为1∶500、1∶2000和1∶10000三种,分别以2年、3年、4年(平原)、8年(山区)的周期进行更新。基础测绘成果以4D数据(DLG数字线划图、DEM数字高程模型、DOM数字正射影像、DRG数字栅格图)为表现形式,实现了全面覆盖、及时更新。测绘部门积极主动做好基础地理数据的推广应用工作,有力地保障了“新北京、新奥运”的战略构想和北京城市总体规划的实施。

2.基础地理信息数据库系统建设。依据北京市基础地理空间框架建设需要,北京市测绘设计研究院建成了1∶500、1∶2000和1∶10000基础地理信息数据库,其中,1∶500库存储管理了北京市四环范围约8800幅地形图、1∶2000库存储管理了六环范围约3300幅地形图,1∶10000库存储管理了全市域930幅地形图;初步建立了1∶2000~1∶10000数字正射影像数据库(DOM)、1∶500~1∶10000数字栅格地图数据库(DRG)、地名与地址数据库和元数据库。同时建设了数据库管理系统。

3.基础地理信息数据服务建设。近5年来,北京院共向建设单位提供1∶500、1∶2000和1∶10000纸质地形图30余万张单幅和1万余张单幅基础地理数据。向全市137家单位提供了较大范围(面积大于6km2)的基础地理数据和服务,其中包括121家各级政府委办局和信息中心,占883%;公司企业单位10家,占73%;科研院所6家,占44%。全市绝大部分的委办局均使用上了北京基础地理数据,不仅推动了全市各个委办局政务信息系统建设,也促进了基础地理数据的应用与更新。在向北京市公安局、市交管局、市交通委等约10家单位提供基础数据时,通过多种方式采集了专题数据,制作了专题电子地图和开发了基于电子地图的专业地理信息系统。

4.数字地形图分发服务系统建设。为了进一步做好现状地形图和历史地形图的管理,北京院建立了现状地形图数据库和历史地形图数据库,用于存储和管理北京市1∶500、1∶2000及1∶10000三种比例尺现状地形图和历史地形图,可为用户提供方便、快捷、优质的测绘成果服务。2004年,北京院建立了数字地形图分发服务系统和历史地形图综合查询系统。该系统的建立可缩短查询和出图时间,缩短了新图归档到对外提供服务的周期,提高了工作效率。

(二)地理信息技术服务。依托北京市基础地理空间框架支撑,北京院加强地理信息系统技术开发服务和工程应用工作,承担主要地理信息系统技术开发服务开发项目及应用工程三十余项,累计获得各级科技进步奖116项次、各级优秀工程奖76项次。依托北京市基础地理信息数据库提取数据,编制北京市政务版电子地形图数据,提供给北京市政府各个委办局使用。该数据的使用,推进政务信息化和信息共享,促进了基础地理信息数据服务与保障。

1.基础地理信息数据在北京城市总体规划修编中的应用。北京城市总体规划的修编,需要有准确可靠的基础地理数据的支持,而规划决策也都需要空间信息的定位,最终的规划成果需要表现在地形图上。为了提供及时有效的基础地理数据,以现有的各种基础地理数据为基础,进行各种专题数据的加工和整合,完成了北京市域规划汇总图和北京市域现状汇总图等GIS数据的加工,并对各种专题数据进行统计分析与应用服务,为各相关部门的各专项规划研究和规划编制工作提供了可靠信息和科学依据,从而保障了北京市总体规划修编工作的顺利实施。

2.为城市建设重点工程、奥运工程提供测绘服务。“新北京、新奥运”战略的实施,迎来了北京城市建设的高峰期,大量的重点工程、奥运工程、市政工程陆续开工建设。北京院为各个建设项目提供了优质测绘服务,保障“新奥运”从规划到实施全过程的用图,编撰了《“新北京、新奥运”地图集》,有力的扩展了测绘服务应用范围。

3.为信息化城市管理提供测绘服务。建立单元网格城市管理是信息化城市管理的新模式。北京院积极提供了基础测绘数据,还为系统建立开展了城市部件调查,采集了大量的专业信息和实施了相关信息整合。在海淀朝阳两区网格项目建设中,采集并整合了21个城市管理专业部门所掌握的空间和非空间信息,建成了18大类、40个专题、几十万条数据为系统建立提供优质测绘服务和保障。

(三)测绘服务社会经济效益稳步增长。近十年来,在市委市政府持续投入财政经费保证基础测绘工作稳步开展,北京院不断完善测绘管理体系和运行机制,积极推进地理信息资源建设与开发利用,测绘队伍不断壮大,地理信息应用服务明显提升,面向测绘市场服务的能力增强。全院的总收入获得快速的增长,职工平均收入水平也得到较大幅度的提高。

北京院在贯彻实施《北京市测绘事业“十一五”发展规划》工作中,积极加强基准体系建设,积极提高数字测绘产品的生产能力,积极加强质量管理体系建设,积极加强地理信息分发服务体系建设,积极做好测绘成果的推广应用工作,努力使北京院测绘服务保障能力达到一个新水平。

ArcGIS是ESRI在全面整合了GIS与数据库、软件工程、人工智能、网络技术及其它多方面的计算机主流技术之后,成功地推出了代表GIS最高技术水平的全系列GIS产品。ArcGIS是一个全面的,可伸缩的GIS平台,为用户构建一个完善的GIS系统提供完整的解决方案。ArcGIS的基本体系能够让用户在任何需要的地方部署GIS功能和业务逻辑,无论是在桌面、服务器、网络还是在野外:桌面GIS(ArcGISDesktop)—ArcGIS桌面GIS软件产品是用来编辑、设计、共享、管理和发布地理信息和概念。ArcGIS桌面可伸缩的产品结构,从ArcReader,向上扩展到ArcView、ArcEditor和ArcInfo。目前ArcInfo被公认为是功能最强大的GIS产品。通过一系列的可选的软件扩展模块,ArcGISDesktop产品的能力还可以进一步得到扩展。嵌入式GIS(EmbeddedGIS)—ArcGISEngine是一个完整的嵌入式GIS组件库和工具包,开发者能用它创建一个新的、或扩展原有的可定制的桌面应用程序。使用ArcGISEngine,开发者能将GIS功能嵌入到已有的应用程序中,如基于工业标准的产品以及一些商业应用,也可以创建自定义的应用程序,为组织机构中的众多用户提供GIS功能。服务器GIS(ServerGIS)—ArcGISServer、ArcIMS和ArcSDE用于创建和管理基于服务的GIS应用程序,在大型机构和互联网上众多用户之间共享地理信息。ArcGISServer是一个中心应用服务器,它包含一个可共享的GIS软件对象库,能在企业和Web计算框架中建立服务器端的GIS应用。ArcIMS是通过开放的Internet协议发布地图、数据和元数据的可伸缩的网络地图服务器。ArcSDE是在各种关系型数据库管理系统中管理地理信息的高级空间数据服务器。移动GIS(MobileGIS)—ArcPad,支持GPS的无线移动设备,越来越多地应用在野外数据采集和信息访问中。ArcGIS桌面和ArcGISEngine可以运行在便携式电脑或平板电脑上,用户可以在野外进行数据采集、分析和乃至制定决策。Geodatabase技术所有的以上软件都可以使用geodatabase技术——为ArcGIS提供核心的地理数据模型和数据管理框架。Geodatabase里面包含了现实世界中的数据,这些数据被保存在数据库中,Geodatabase工具实现一些商业逻辑,这些工具可以被用来获取和管理GIS数据。Geodatabase可以在下列软件中访问:客户端软件产品(ArcGISDesktop)服务器端软件(ARCGISSERVER)自定义嵌入式开发的产品(ArcGISEngine)移动GIS产品(ArcPad,ArcGISDesktop,ArcGISEngine)

目前国内外在地理信息服务领域研究较多,主要分为下面三个方面。

1331 地理空间信息服务标准化方面

地理空间信息服务标准化工作是地理空间信息服务得以稳健发展,高效互 *** 作与集成的基础,得到了许多国际化组织和机构的关注,取得了不少研究成果。作为全球最大的空间信息、互 *** 作规范的制订者和倡议者,开放地理信息系统联盟(OpenGISConsortium,OGC)已经认识到在地理信息领域中引入 Web 服务技术的重要性和紧迫性,对地理信息服务制定了一系列的规范,主要包括: 网络矢量数据服务(Web Feature Service,WFS)、网络栅格数据服务(Web Coverage Service,WCS)、网络地图服务(Web Map Service,WMS)、网络处理服务(Web Geoprocessing Service)、网络目录服务(Catalogue Service-Web)等地理信息服务的相关规范。以上这些规范既可以作为 Web 服务的空间数据服务规范,又可以作为空间数据的互 *** 作实现规范。国际标准化组织 ISO/TC211 技术委员会在 ISO 19119 草案中也对地理信息服务的相关概念、标准做了规定。在 ISO/TC211 技术委员会和 OGC 组织制定地理信息服务的内涵和标准的基础上,越来越多的学者投入到地理信息 Web 服务研究中。然而,国内在地理空间信息服务标准化方面的研究人员和研究工作非常少。

1332 地理空间信息服务模式及框架方面

国外 Panatkool(2002)介绍了一种基于 P2P 网格的分布式网络地理信息服务模式,在这个模式下,地理信息服务可以在节点间迁移。Onchaga(2006)研究了一种服务质量(QoS)支持的服务链方法,使得地理空间信息服务在发现、组合以及执行过程中能同时顾及功能性以及质量上的要求,并且构建了一个服务质量管理框架以对服务链中基础的概念,规则以及机制进行定义。Shu et al(2006)提出了如下图 18 融合 OGC 技术和网格技术的地理空间信息共享架构。

图 18 于 OGC 服务的网格框架(Shu et al,2006)

梁旭鹏等(2006)在分析了传统的解决空间信息共享与互 *** 作方法存在的不足的基础上,提出从数据共享、功能互 *** 作系统集成等多面考虑实现空间信息共享与互 *** 作的设计思想,建立基于 Web 服务的分布式空间信息共享与互 *** 作模型。陈应东(2008)提出了适合空间信息特点的空间信息服务模式组成结构,并详细论述了空间信息服务模式的基本组成要素和特征,以及模式之间的演变规律; 并在此基础上阐述了面向服务的空间信息服务活动过程的实现架构与运行流程,空间信息服务资源管理体系以及基于脱坡结构的描述服务之间关系的方法(陈应东,2008)。罗英伟等(罗英伟等,2003; 王文俊等,2005)设计了一个基于 Web Services 技术的、可实现城市空间信息服务集成与互 *** 作的框架 - π 系统框架,系统由 6 个层次组成: 应用层、>

1333 地理空间信息服务应用方面

这方面研究比较多,Best(2007)介绍了一种是通过在科学工作中使用地理空间信息服务的方法来实现动态环境中对海洋哺乳动物栖息地的预测。Hamre(2009)在 InterRisk项目(欧洲海洋海岸带环境风险互 *** 作服务)中建立了基于网络地理信息服务的海洋污染监测与预报互 *** 作服务,并成功运用于挪威、英国、爱尔兰、德国以及波兰的水域。Foerster et al(2010)在网络服务环境下基于 OGC 的 WPS 服务实现了地理空间数据的地图综合以及模式转换。王兴玲(2002)对基于 Web 的地理信息服务模式以及相关方面的问题进行了初步的探索和研究,利用 XML(GML/SVG)和 Web Service 技术构建了一个基于 Web 的地理信息服务平台,并成功应用到 “北京指南”平台中。马林兵等(2003)提出了一个基于可重用 Web Services 技术在全球范围内解决 GIS 数据集成和共享问题的新方法,并应用于城市交通管理信息系统中。刘文亮等(2009)、杨峰等(2008),分别通过 Web Service 实现了在分布式环境下海洋标量场数据与矢量场数据的远程时空过程可视化。何亚文等(2009b)通过 Web Service 实现了网络环境下的 NDVI 的计算,研究了基于Web Service 的 Argo 数据服务框架及相应的实现方法,为用户提供透明的、 “一站式” 的Argo 数据 Web 应用(何亚文等,2009a)。

一、范围

本标准定义了山东半岛城市群地质-生态环境空间数据库的数据结构框架、数据实体及实体之间的相互关系,定义了成果图件空间数据的要素集、要素类、要素分类代码及属性数据项,可用于山东半岛城市群项目数据的采集、存储、管理、共享及数据库建设。

二、规范性引用文件

下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。

GB / T 1 1—2000 标准化工作导则 第 1 部分: 标准的结构和编写规则

GB / T 13923—92 国土基础信息数据分类代码

GB / T 2260—1999 中华人民共和国行政区划代码

GB / T 2659 世界各国和地区名称代码

GB / T 9649—88 地质矿产术语分类代码

DZ / T 0160—95 1∶ 200000 地质图地理底图编绘规范及图式

DZ / T 0197—1997 数字化地质图图层及属性文件格式

GB 958—99 区域地质图图例 ( 1∶ 50000)

DZ / T 0179—1997 地质图用色标准及用色原则

DDB 9702 GIS 图层描述数据内容标准

GB 17108—1997 海洋功能区划技术导则

中国地质调查局 地质图空间数据库建设工作指南 ( 2 0 版)

中国地质调查局 1∶ 20 万区域水文地质图空间数据库图层及属性文件格式工作指南

三、术语和定义

本标准涉及的主要术语如下:

1 地理信息数据库 ( geodatabase)

采用标准关系数据库技术来管理、表现地理信息的空间数据库。

2 数据包 ( data package)

逻辑相关数据实体的集合,本标准中将山东半岛城市群项目数据整体视作一个数据包。

3 数据实体 ( data entity)

描述专业领域同一类型数据的数据元素的集合,如地质构造数据实体,概念上等同于UML 的类。数据实体可通过一个或多个相关的数据元素及相关的数据实体定义。

4 数据集 ( dataset)

逻辑相关数据组成的数据集合,如一幅地图可视作一个数据集,数据集是一个逻辑上的整体。

5 数据子集 ( subdataset)

按一定规则划分的数据集中逻辑相关数据的集合,本标准中的一个数据子集对应一个地图要素类,数据子集类别对应地图上的图层划分。

6 空间数据 ( spatial data)

用来表示空间实体的位置、形状、大小和分布特征诸方面信息的数据。空间数据不仅具有实体本身的空间位置及形态信息,而且还有实体属性和空间关系 ( 如拓扑关系)信息。

7 空间参照系 ( spatial reference)

对地理信息数据的空间范围和投影的描述。

8 地图 ( map)

地理信息的图形描述,包括地理信息数据和地图元素,如标题、图例和比例尺等。本标准中将一幅地图视作一个数据集进行管理,并通过一组要素集 ( 要素类、关系类、属性表的集合) 、空间参照系、地图样式定义地图的数据内容及显示方式。

9 图层 ( layer)

地图上特定区域范围内按一定规则划分的相似要素类的集合,如水系、城镇。图层为要素类的专题组合及表现,一个图层定义了它包含地理信息数据的地理位置和显示方法。

10 要素 ( feature)

现实世界中的对象在地图图层中的表示,如地图中表示道路的一条线。

……

四、缩略语和符号

1 缩略语

ARD 图外整饰要素 ( Elements Around Map)

BMAP 地理底图 ( Basemap)

BOU 境界、边界 ( Bourn)

CD 代码 ( Code)

COL 综合柱状图 ( Colomnar Chart)

DT 日期 ( Date)

ELE 地形高程 ( Elevation)

……

2 UML 类图符号

山东半岛城市群地区地质-生态环境与可持续发展研究

3 ER 图符号

山东半岛城市群地区地质-生态环境与可持续发展研究

五、基于 UML 的 Geodatabase 的空间数据模型

构建地质数据的空间数据模型是建立地质信息数据库的一项关键工作,是数据库建设的基础。Geodatabase 数据模型作为 ArcGIS 软件平台的一种通用数据形式,目前已被国内外众多地质空间数据库的建设所采用。数据建模也已经成为地质数据库建立的一项主要内容。

目前针对地质、水文、矿产、海洋等多个领域的专业 Geodatabase 数据模型都已存在,国内目前应用于区域地质 - 生态环境调查的综合地质 - 生态环境空间数据模型还比较少见。因此,本项目在分析国内外目前比较通用的各专业数据模型的基础上,提出了专门面向山东半岛城市群地质 - 生态环境空间数据库建设的 Geodatabase 数据模型。

在 Geodatabase 数据模型中,允许定义要素之间类型的关联,Geodatabase 对空间数据管理以关系数据库为基础,利用商用关系数据库成熟的数据处理能力对空间数据和非空间数据进行统一管理。Geodatabase 使用面向对象的方法,使得要素可以具有自己的行为和属性,并且要素类具有继承性、多态性和封装性。这样,以更加适合自然的行为和人的思维方式去组织数据,更精确地模拟真实世界。

1 Geodatabase 数据模型的结构体系

Geodatabase 数据模型作为一种新型的面向对象的数据模型,融入了面向对象的核心技术,如类 ( Class) 、对象 ( Object) 、封装 ( Encapsulation) 、继承 ( Inheritance) 和多态( Polymorphism) 等思想和技术。Geodatabase 数据模型的目的就是为了让用户能更容易、更自然地表示 GIS 数据特征和更容易地建立特征之间的各种关系。Geodatabase 空间数据库数据模型如表 12 -1 所示。

表 12 -1 Geodatabase 内部结构

续表

2 Geodatabase 数据库模型的特点

Geodatabase 有两种,即个人与多用户 Geodatabase。

1) 个人 Geodatabase 支持内置于 ArcGIS 系统并提供对本地数据的访问,适用于面向项目的 GIS,在 Microsoft Access 数据库平台上实现,提供生成和更新 Access 数据库的服务,可处理小型或适中的 Access 数据库。但个人 Geodatabase 的存储容量有不能超过 2GB的限制。

2) 多用户的 Geodatabase 是通过 ArcSDE ( ARC 空间数据库引擎) 实现的。ArcSDE可以生成和访问从小型到大型的 Geodatabase 并提供关系型数据的开放界面。

与标准的关系数据库相比,Geodatabase 简化了地理数据建模的工作,因为它包含有用于建模地理信息的通用模型。

此外,Geodatabase 还同时支持两个视图,即对象视图和关系视图。这样就综合了对象视图和关系视图两者的优点。对象视图在 Geodatabase 中占据主导地位,其目的是提供一个接近于逻辑数据模型的数据模型,因而更接近于现实。关系视图则用于一些 Geodata-base 数据的常规处理,它表示的是一些简单地理对象的特征。

3 基于 UML 的 Geodatabase 数据模型的设计

( 1) Geodatabase 数据库设计的方法

在 ArcGIS 中,建立地理数据库可以有多种方法。借助 ArcCatalog,可以通过 3 种方式建立新的地理数据库。

第一种方法是建立一个新的地理数据库。

第二种方法是移植已经存在的数据到地理数据库中去。

第三种方式是用 CASE 工具来建立地理数据库。

( 2) 面向对象和 UML ( 统一建模语言)

面向对象是软件程序设计中的一种新思想,它能使程序设计更加贴近现实,并且花费更小的精力。面向对象方法学包含了对象 ( object) 、类 ( classification) 、继承 ( inherit-ance) 、聚集和消息 ( messages) 的概念。

UML ( Unified Modeling Language,统一建模语言) 是一种基于面向对象方法的建模语言,具有创建系统的静态结构和动态行为等多种结构模型的能力,是一种通用的建模语言。在 Geodatabase 的设计中,主要用到描述系统静态结构的类图。类图的节点表示系统中的类及其属性和 *** 作。类图的边表示类之间的联系,包括继承、关联、依赖、聚合等。

类的表示由 3 个部分方框组成,上面部分给出了类的名称; 中间部分给出了该类的单个对象的属性; 下面部分给出了一些可以应用到这些对象的 *** 作。类的表示如图 12 -5。

图 12 -5 类的表示

关联是对类的实例之间联系的命名,与关联有关的内容有关联元数 ( Degree) 、关联角色 ( Role) 和重复度 ( Multiplicity) 。

UML 中有 3 种类型的类: 抽象类 ( abstract class) 、可创建化类 ( creatable class) 和可实例化类 ( instantiable class) 。

UML 类图的符号见本节第四部分内容。

( 3) 面向对象的地理数据模型的设计方法

利用 CASE 工具进行 Geodatabase 数据模型设计的步骤具体为:

1) 在 CASE 工具中进行 UML 建模。

2) 将设计好的 UML 模型载入资料库 ( repositry) 。

3) 利用 GIS 软件提供的 CASE 接口,根据资料库中的 UML 模型生成空间数据库结构。至此,Geodatabase 空间数据库结构初具雏形。在 GIS 软件环境中,现在可以将新生成的数据或已有的数据进行格式转换后载入到设计好的 Geodatabase 空间数据库中,由空间数据库统一管理。利用 CASE 工具来建立 Geodatabase 地理数据库的工作流程见图12 - 6。

图 12 -6 利用 CASE 工具来建立 Geodatabase 地理数据库的工作流程

六、地质 - 生态环境 Geodatabase 数据模型的建立

( 一) 数据模型设计的依据

根据山东半岛城市群地质 - 生态环境调查评价研究工作的需要和山东半岛城市群地质 - 生态环境 GIS 数据库系统的整体设计要求,结合各地质 - 生态环境要素的成果图件和文本报告资料,利用 UML 设计工具 Microsoft Visio 完成了山东半岛城市群地质 - 生态环境Geodatabase 数据模型的设计 ( 图 12 - 7) 。

图 12 -7 山东半岛城市群地质 - 生态环境 Geodatabase 数据模型的设计依据

( 二) 山东半岛城市群地质 - 生态环境数据库的 UML 类图

1 数据集管理

山东半岛城市群项目数据包中的数据以数据集为单元统一组织管理,数据集管理方式就是将一份文字报告或一幅成果图件视作逻辑上的整体,用 “数据集编号”唯一标识,通过数据集实体统一管理。同一数据集的不同实体,例如成果图中的图层,通过实体中的“数据集编号”元素关联。

2 空间数据管理

山东半岛城市群项目数据包由文字报告及成果图件两大类数据组成,并以成果图件为主,成果图件是一空间数据实体,统一存储在面向对象的地理信息数据库中,以图幅为单元进行管理。

3 数据包总体结构

本标准中山东半岛城市群项目数据包总体结构用 UML 模型来体现,山东半岛城市群项目数据包由 “成果报告”、“元数据”及 “存档文件”3 个数据实体 ( UML 类) 组成,通过 “数据集”实体统一组织管理。“成果报告”由它的继承类 “文字报告”及 “成果图件”定义,为研究成果数据包的主体数据。“元数据”及 “存档文件”为数据集的辅助数据,“元数据”存放文字报告或成果图件的元数据; “存档文件”存放文字报告或成果图件的相关存档文件,供数据集数据的整体下载与利用。

一个 “数据集”实体对应一个项目的 “文字报告”或一幅 “成果图件”; 每一个数据集必须有一个而且只能有一个 “元数据”文件; “存档文件”是 “数据集”的可选聚合实体。

“成果图件”是一空间数据实体,由特定的面向对象地理信息数据库 ( Geodatabase)统一存储、管理。一幅 “成果图件”数据内容由一组空间要素集 ( 基础地理要素集、地质要素集、地球物理要素集、地球化学要素集、辅助要素集) 组成,空间要素集数据类型包括矢量 ( Feature Dataset,简称要素集) 、栅格 ( Raster Dataset) 和 TIN ( TIN Dataset)3 种。

4 数据集编号的编码规则

数据集编号由数据库管理方统一编码,必须保证编号在数据库中唯一,编号中的英文字母全部大写。

山东半岛城市群项目数据集按 “项目或图幅—提交单位—提交年份—成果序号”编码。数据集编号的字符串长度不得超过 22 位,以保证 “数据集编号 + 要素类名”的字符串总长度不超过 30 位。

5 成果图件要素类命名规则

要素类名字符串总长度不得超过 8 位。

矢量要素类按 “要素集类型 + 要素类名 + 要素类型”命名,全部用大写英文字母表示。“要素集类型”用一位代码表示,如 “L”表示基础地理要素集。栅格数据集数据以“要素集类型 + 要素类型”命名,要素类型用代码 RAS 表示,如 “DRSRAS”表示遥感栅格数据。TIN 数据集数据以 “要素集类型 + 要素类型”命名,要素类型用代码 TIN 表示,如 “LELETIN”表示地面高程 TIN。

6 成果图件要素分类编码规则

要素分类编码用以标识不同的要素类要素,保证地图要素存储、交换、显示的一致性。

( 1) 分类编码原则

1) 科学性、系统性;

2) 相对稳定性;

3) 不受地图比例尺的限制;

4) 完整性和可扩展性;

5) 适用性。

( 2) 分类编码方法

成果图件要素类中不同要素的分类编码采用中华人民共和国国家标准 《国土基础信息数据分类与代码》的编码结构,结构如下:

山东半岛城市群地区地质-生态环境与可持续发展研究

大类码、小类码、一级代码和二级代码分别用数字顺序排列。识别位由用户自行定义,以便于扩充。在本项目中编码分两类: ①基础地理要素编码; ②地质专业要素编码( 地质、地球物理、地球化学等) 。

( 三) 山东半岛城市群项目数据实体及实体关系

山东半岛城市群项目数据实体类及其代码见表 12 -2,实体类名代码按实体类的英文名缩略语编码,本标准中山东半岛城市群项目数据实体及实体间关系用 UML 及实体关系图 ( ERD) 来体现。

表 12 -2 山东半岛城市群项目数据实体类及其代码

1 数据集实体 ( MGRD_Dataset)

山东半岛城市群项目数据包中的 “数据集”实体用来统一组织管理 “文字报告”、“成果图件”、“元数据”及 “存档文件”数据实体,“数据集”实体中的数据项包含数据集的归属项目、提交日期、提交单位、主题类别及地理范围等可用于数据集检索的信息。一个 “数据集”实体对应一个项目的 “文字报告”或一幅 “成果图件”,“数据集”实体与 “元数据”实体间为一一对应关系,与 “存档文件”实体间为一对多的对应关系。“数据集”实体的数据内容及其存储表通过 “数据子集”实体分类定义,主键 [数据集编号]可用于同一数据集中不同 “数据子集”的关联,也可用于数据集对应的 “元数据”及“存档文件”的关联。

2 成果报告数据实体 ( MGRD SumTmaryReport)

研究成果报告数据实体包括项目的最终综合文字报告及相应的成果图件。

( 1) 文字报告数据实体 ( SR_WordReport)

文字报告数据实体包括 “文字报告”及图像格式的 “报告附图”数据实体,文字报告及附图均以二进制大对象存储。数据实体之间通过 [数据集编号] 关联。

( 2) 成果图件数据实体 ( SR_hemeMapSet)

“成果图件”数据实体是一空间数据实体,主要以矢量图形格式存储在地理信息数据库中,其中也包括栅格数据及 TIN 数据用于数据的空间分析。

1) 要素集: “成果图件” 数据实体以图幅为数据集单元进行管理; 图幅内容以分属不同空间要素集 ( 基础地理要素集、地质要素集、地球物理要素集、地球化学要素集、辅助要素集) 的要素类组合,同一个要素集内的要素类享有同一空间参照系,相互具有拓扑关系。

2) 要素类: 一个要素类的存储单元为关系数据库中的一个数据表,要素类图元类型有点、线、面、注记 4 种,一个要素类只能包含一种图元类型。本标准中基础地理要素集、地质要素集、地球物理要素集、地球化学要素类、辅助要素集的要素类用 UML 类图体现。

3) 图层: 图层为要素类的专题组合及表现,不同图层的组合即构成了可视化 “成果图件”。本项目通过对数据来源的分析,提出并建立了适合山东半岛城市群地区地质 - 生态环境调查与评价特点的空间数据库数据图层。考虑到空间数据的应用和相互转换,每一图层均应建立相应的内部属性表,属性表必须包含一些基本字段内容,根据具体任务的不同,需灵活扩充内部属性表字段内容。 “成果图件”数据实体的图层划分及其代码见表 12 -3。

4) 要素类属性: 要素类的要素特征由属性表定义,属性表每一行对应一个要素,每一列包含要素的一个特征信息。

表 12 -3 成果图件数据实体的图层划分及其代码

5) 要素类要素分类: 同一要素类中不同类型的要素用不同的代码标识,通过属性表中的 “编码” ( GEO_CODE) 数据项体现,以便地图中同一要素类要素的分类显示,并保证地图要素存储、交换、显示的一致性。在本项目中成果图件的基础地理要素分类代码采用中华人民共和国国家标准 《国土基础信息数据分类与代码》,并根据需要进行了扩充,地质专业要素分类代码全部由本标准定义,见表 12 -4 和表 12 -5。

表 12 -4 基础地理要素分类代码

表 12 -5 地质专业要素分类代码

图12 -8 山东半岛城市群项目数据包UML类图

图层编码中,第一位为图类代码,L 代表基础地理类图层; D 代表基础地质类图层;G 代表国土资源图层; W 代表地壳稳定性图层; S 代表水资源图层; H 代表海岸带图层;T 代表生态环境图层; R 代表人类工程活动图层; F 代表分析评价图层; Y 代表预测与防治图层; Z 代表辅助图层。第二位为比例尺代码,图件均采用 1∶ 50 万比例尺,代码为 B。第三位到第五位为图名的汉语拼音首字母缩写。第六位为图层数字编号。

( 四) 山东半岛城市群项目 UML 类图

1 山东半岛城市群项目数据包 UML 类图

UML 类图见图 12 - 8。

2 成果图件要素集 UML 类图

1) 基础地理要素集实体 UML 类图 ( FD_Geography) 。本项目将基础地理要素分为地理网格、居民地、境界、交通网、地貌地形、水系、海洋海岸带、行政区划、栅格数据等 9个抽象要素类,建立了 “各市基本情况”对象类,与表明各地区域的 “城市群”类相连接,将山东半岛城市群8 个地级市的地理位置数据与地区的基本资料数据有机地联系起来。

2) 地质要素集实体 UML 类图 ( FD_Geology) 。

3) 国土资源要素集实体 UML 类图 ( FD_LandResource) 。

4) 水资源要素集实体 UML 类图 ( FD_WaterResource) 。

5) 生态环境要素集实体 UML 类图 ( FD_Environment) 。

6) 辅助要素集实体 UML 类图 ( FD_Ancillary) 。

3 山东半岛城市群项目数据实体关系图

1) 数据集实体 ER 图 ( MGRD_DataSet) 。

2) 研究成果报告数据实体 ER 图 ( MGRD_SummaryReport) ( 图 12 - 9) 。

图 12 -9 研究成果报告数据实体 ER 图 ( MGRD_SummaryReport)

七、山东半岛城市群项目数据包数据字典

( 一) 数据集实体 ( MGRD_DataSet)

山东半岛城市群地区地质-生态环境与可持续发展研究

( 二) 研究成果报告数据实体 ( MGRD_SummaryReport)

1 文字报告数据实体 ( SR_WordReport)

山东半岛城市群地区地质-生态环境与可持续发展研究

2 成果图件数据实体 ( SR_ThemeMapSet)

( 1) 基础地理要素集实体 ( FD_Geography)

山东半岛城市群地区地质-生态环境与可持续发展研究

( 2) 地质要素集实体 ( FD_Geology)

山东半岛城市群地区地质-生态环境与可持续发展研究

( 3) 水资源要素集实体 ( FD_HydroResource)

山东半岛城市群地区地质-生态环境与可持续发展研究

以上就是关于如何在国土资源管理中构建地理信息系统全部的内容,包括:如何在国土资源管理中构建地理信息系统、 数据服务器、什么是“基础地理空间框架”具体的内容包括什么等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/sjk/9358211.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-27
下一篇 2023-04-27

发表评论

登录后才能评论

评论列表(0条)

保存