什么是数据模型,包含哪几种类型 (数据库)

什么是数据模型,包含哪几种类型 (数据库),第1张

1)数据模型的分类:

最常用的数据模型是概念数据模型和结构数据模型:

①概念数据模型(信息模型):面向用户的,按照用户的观点进行建模,典型代表:E-R图

②结构数据模型:面向计算机系统的,用于DBMS的实现,典型代表有:层次模型,网状模型、关系模型,面向 对象模型

数据结构:主要描述数据的类型、内容、性质以及数据间的联系等,是目标类型的集合。目标类型是数据库的组成成分,一般可分为两类:数据类型、数据类型之间的联系。数据类型如DBTG(数据库任务组)网状模型中的记录型、数据项,关系模型中的关系、域等。

联系部分有DBTG网状模型中的系型等。数据结构是数据模型的基础,数据 *** 作和约束都基本建立在数据结构上。不同的数据结构具有不同的 *** 作和约束。

数据 *** 作:数据模型中数据 *** 作主要描述在相应的数据结构上的 *** 作类型和 *** 作方式。它是 *** 作算符的集合,包括若干 *** 作和推理规则,用以对目标类型的有效实例所组成的数据库进行 *** 作。

数据约束:数据模型中的数据约束主要描述数据结构内数据间的语法、词义联系、他们之间的制约和依存关系,以及数据动态变化的规则,以保证数据的正确、有效和相容。它是完整性规则的集合,用以限定符合数据模型的数据库状态,以及状态的变化。

约束条件可以按不同的原则划分为数据值的约束和数据间联系的约束;静态约束和动态约束;实体约束和实体间的参照约束等。

数据模型:用来描述数据、组织数据和对数据进行 *** 作,是对现实世界数据特征的描述。

建立数据模型的目的:计算机不能直接处理现实的事物,所以,人们只有将现实事物转成数字化的数据,才能让计算机识别处理。

数据模型分类:概念模型,逻辑模型,物理模型。

概念数据模型

概念数据模型(Conceptual Data Model),是一种面向用户、面向客观世界的模型,主要用来描述世界的概念化结构,它是数据库的设计人员在设计的初始阶段,摆脱计算机系统及DBMS的具体技术问题,集中精力分析数据以及数据之间的联系等,与具体的数据管理系统(Database Management System,简称DBMS)无关。概念数据模型必须换成逻辑数据模型,才能在DBMS中实现 。

在概念数据模型中最常用的是E-R模型、扩充的E-R模型、面向对象模型及谓词模型  。

逻辑数据模型

逻辑数据模型(Logical Data Model),是一种面向数据库系统的模型,是具体的DBMS所支持的数据模型,如网状数据模型(Network Data Model)、层次数据模型(Hierarchical Data Model)等等。此模型既要面向用户,又要面向系统,主要用于数据库管理系统(DBMS)的实现  。

物理数据模型

物理数据模型(Physical Data Model),是一种面向计算机物理表示的模型,描述了数据在储存介质上的组织结构,它不但与具体的DBMS有关,而且还与 *** 作系统和硬件有关。每一种逻辑数据模型在实现时都有其对应的物理数据模型。DBMS为了保证其独立性与可移植性,大部分物理数据模型的实现工作由系统自动完成,而设计者只设计索引、聚集等特殊结构  。

逻辑模型的特点:

1、用来构建数据仓库的数据库逻辑模型;

2、根据分析系统的实际需求决策构建数据库逻辑关系模型,定义数据库物体结构及其关系;

3、它关联着数据仓库的逻辑模型和物理模型两方;

4、能直接反映出业务部门的需求,同时对系统的物理实施有着重要的指导作用;

5、可以通过实体和关系勾勒出企业的数据蓝图。

逻辑模型是严格定义的一组概念的集合,主要由数据结构、数据 *** 作和完整性约束部分组成,通常称为数据三要素。

数据模型是用于描绘、沟通数据需求的一组简单易懂、标准的,并且便于计算机实现的标准符号的集合。数据库很强大,但数据在其中的关系却错综复杂,成千上万个表通过各种关系或约 束互连以形成复杂的结构。

没有数据模型,利益相关者很难看到现有数据库的结构、理解关键概念,当需要描述数据需求的时候,也很难准确地表达出来,这也是数据模型很重要的一个最主要的原因。

扩展资料

与实物模型不同,数据模型不是等比例模拟出来的真实事物,而是一组能表示数据需求、数据结构的符号集合。

在房屋平面图中,中间有条线的矩形表示窗户,用直角扇形表示门。在数据模型中,用矩形框或圆角矩形表示实体;用线以及线上的符号表示实体之间的关系、基数或约束;用写在线上的词或词组表示标签,所有的这些符号组成了各种各样的数据模型。

建筑设计师在盖房之前通过房屋平面图描绘建筑需求,建筑工人就可以看着这些平面图来盖房子。房子盖完之后还可以把房屋平面图展示给客户,这样即使客户不去现场看实体房就可以大概了解房屋结构。

数据模型也是专门设计出来描绘数据需求,给技术实现人员来建造数据库,并且实现数据需求无障碍沟通的“图纸”。

参考资料来源:百度百科—逻辑模型

数据库物理模型设计的目标是根据选定的Oracle数据库系统特点和航空物探数据管理与服务的业务处理需求,确定航空物探数据库最优的物理环境、存取方法和存储结构。即通过数据库物理设计,以便达到物理数据库结构的优化,使得在数据库上运行的各种事务响应时间少、存储空间利用率高、事务吞吐率大。

一、数据库布局

航空物探信息系统的维护数据(部门、岗位、人员、人员权限、数据入库检查规则及数据字典等)相对比较稳定。入库前数据需经过各种检查校对,确认数据正确后才能归档,存入航空物探资料数据库,所以存入资料库前的数据可能经常需要修改和删除,相对变化较大;而存入资料数据库中的数据一般不允许修改和删除,以免误 *** 作破坏资料库数据造成损失。

图2-12 航空物探数据库逻辑模型

图2-13 航空物探数据库布局与数据采集流程图

据此,我们采用图2-13所示的数据库数据采集流程,并将航空物探数据库分为资料采集数据库、资料数据库、系统维护数据库分别进行存储和管理,实现数据的统一管理和统一使用,便于数据入库和易于维护等。

航空物探资料数据库是航空物探所有数据最终存储的场所。资料采集数据库是数据归档存入资料数据库前的临时“集散地”,在此接收各项检查,在确认数据无误后归档到资料数据库,然后删除资料采集数据库中已归档的数据。此外,资料采集数据库中还保存数据入库、维护、检查日志及归档记录。

系统维护数据库,存储系统维护信息(如系统功能、数据库表清单等)、安全信息(如信息系统用户的角色、权限、授权的系统功能等),数据字典、入库数据检查规则等。将其与航空物探数据分开,有利于系统维护和管理。

二、数据库空间设置

数据库空间设置包括磁盘空间设置、应用系统表空间设置、撤销表空间、临时表空间、日志空间和索引空间设置。

(一)磁盘空间设置

磁盘空间设置的目标:磁盘性能不能阻碍实现数据库性能,数据库磁盘必须专用于数据库文件,否则非数据库将会影响到数据库性能,且磁盘空间必须满足恢复和性能的要求。

航空物探数据库服务器为IBM P620小型机,8块硬盘,每块硬盘36GB空间,每块物理磁盘建立一个文件系统。为了提高磁盘的反应时间和寻道时间,提高I/O的存取效率,除了一块硬盘用于UNIX *** 作系统外,其余7块磁盘分别存放资料采集数据库、系统维护数据库-日志文件,资料数据库及资料数据库的大字段数据、索引、回滚段和数据日志文件。

(二)应用系统表空间设置

信息系统数据采集过程对数据的事务 *** 作比较频繁,经常进行数据插入(新数据入库)、修改(入库数据有误)和删除 *** 作(数据重新导入或归档入库),因此航空物探资料采集数据库所在的表空间会很活跃。为了不影响其他I/O的竞争,同时也可以提高数据入库的 *** 作效率(50多年的历史数据需要集中入库),分配一个磁盘空间(36GB)为采集库的表空间。由于采集数据归档入资料库后被删除,同时进行数据入库的项目也不是很多,虽仍保留所有的采集日志数据,一个磁盘空间也足够使用。

航空物探资料数据库的二维表和Oracle大字段(BLOB)分别存放在不同的物理磁盘(每个磁盘36GB)上,对同时存在有表格数据和大字段数据的数据库表(如航迹线数据)时,可以提高磁盘I/O效率。随着数据入库的项目越来越多,需要增加相应的物理磁盘或磁盘阵列。

系统维护数据库相对稳定,占用磁盘空间约500 M左右。由于系统磁盘有限,把日志文件存放该磁盘中。

(三)撤销表和临时表空间的设置

在Oracle数据库中,撤销的目的是确保事务的回退和恢复。撤销参数有UNDO_MANAGEMENT、UNDO_TABLESPACE和UNDO_RETENTION。

UNDO_MANAGEMENT参数用于数据库中管理撤销数据的方式,航空物探数据库设置为自动模式(auto)。

UNDO_TABLESPACE参数用于指定数据库中保存撤销数据的撤销表空间名称,航空物探数据库撤销表空间名称为UNDO_ARGS_TBSPACE,空间大小设置为20GB,以确保在保留时间内进行恢复。

UNDO_RETENTION参数用于指定已经提交事务的撤销数据在能够覆盖之前应该保留多长时间,本数据库系统设置为60 min。

临时表空间是用以存储大量的排序,与撤销表空间存放在一个物理磁盘上,本数据库系统临时表空间设置为500 M。

(四)日志空间设置

日志的主要功能是记录对数据库已做过的全部 *** 作。在系统出现故障时,如果不能将修改数据永久地写入数据文件,则可利用日志得到该修改,所以不会丢失已有 *** 作结果。

日志文件主要是保护数据库以防止故障。为了防止日志文件本身的故障,航空物探数据库系统分别在一个独立磁盘和系统维护库磁盘中存放日志文件。若系统出现故障,在下次打开数据库时Oracle数据库系统自动用日志文件中的信息来恢复数据库文件。

根据航空物探数据库信息系统同时登录的用户数及使用的功能,将日志文件大小设置为10GB。

(五)索引表空间设置

为了提高航空物探信息系统的查询和统计速度,把所有索引空间与应用表空间完全分开,从而提高I/O存取效率。航空物探索引表空间大小设置为10GB。

聚集是表的一种存储方法,一般每个基本表是单独组织的,但对逻辑上经常在一起查询的表,在物理上也邻近存放,这样可减少数据的搜索时间,提高性能。

当几个关系(表)以聚集方式组织时,是通过公共属性的值为表聚集的依据。航空物探数据库系统是以项目标识(PROJ_ID)建立聚集的,所有涉及项目标识的数据库表直接引用项目标识聚集。航空物探聚集表空间与索引表空间相同。

三、数据库参数设置

在数据库创建前需要对如下数据库参数进行设置,航空物探参数文件名为Initoraargsora,各种参数设置如下:

航空物探信息系统建设

四、内存设置

航空物探数据库服务器物理内存为4GB,除部分用于系统开销外,其余全部用于数据库。

Oracle使用共享系统全局区(System Global Area,SGA)内存来管理内存和文件结构,包含DB_block_Buffers、DB_cache_size、Shared_pool_size、Log_Buffer参数。航空物探数据库系统的全局区内存参数设置如下。

DB_block_Buffers参数为SGA中存储区高速缓存的缓冲区数目,每个缓冲区的大小等于参数DB_block_size的大小,DB_block_Buffers=19200(约300 MB)。

Shared_pool_size参数为分配给共享SQL区的字节数,是SGA大小的主要影响者,Shared_pool_size=1228800000(12GB)。

DB_cache_size参数是SGA大小和数据库性能的最重要的决定因素。该值较高,可以提高系统的命中率,减少I/O,DB_cache_size=1024000000(1GB)。

Log_Buffer参数为重做日志高速缓存大小,主要进行插入、删除和修改回退 *** 作,Log_buffer=5120000(5MB)。

五、优化设置

由于航空物探信息系统的采集软件和应用软件是采用MSNET C#进行开发的,应用程序与数据库之间的连接有传统的ODBC和OLE DB两种方式。为了支持ODBC在OLE DB技术上建立了相应的OLE DB到ODBC的调用转换,而使用直接的OLE DB方式则不需转换,从而提高处理速度。

在建立数据库表时,参数Pctfree和Pctused设置不正确可能会导致数据出现行链接和行迁移现象,即同一行的数据被保存在不同的数据块中。在进行数据查询时,为了读出这些数据,磁头必须重新定位,这样势必会大大降低数据库的执行速度。因此,在创建表时应充分估计到将来可能出现的数据变化,正确地设置这两个参数,尽量减少数据库中出现的行链接和行迁移现象。

航空物探资料采集数据库表的插入、修改和删除的频率较高,Pctfree设置为20,Pctused设置为40;系统维护数据库表相对稳定,Pctfree设置为10,Pctused设置为15;资料数据库表除了增加数据外基本不进行修改和删除 *** 作,Pctfree设置为10,Pctused设置为5。

六、扩展性设置

多CPU和并行查询PQO(Parallel Query Option)方式的利用:CPU的快速发展使得Oracle越来越重视对多CPU的并行技术的应用,一个数据库的访问工作可以用多个CPU相互配合来完成。对于多CPU系统尽量采用并行查询选项方式进行数据库 *** 作。航空物探数据库服务器为2个CPU,在程序查询中采用了并行查询的方式。

在航空物探工作量统计、飞行小时统计、测量面积统计和岩石物性统计中,为了加快统计效率,在相应的查询语句中增加了并行查询语句。

随着航空物探高精度测量程度的不断提高,测量数据将越来越大。为了满足航空物探查询效率及发展,将航磁测量数据与校正后航磁测量数据按比例尺分1∶20 万以下、20万~50万、1∶50万以上分别存放3张不同的数据库表。

七、创建数据库

在完成数据库布局、空间设置、内存设置、数据库参数设置、扩展性设置和优化设置后,进行航空物探数据库物理模型设计,即航空物探数据库实体创建。由于航空物探空间数据库逻辑模型是采用ESRI提供的ArcGIS UML构建的Geodatabase模型,因此,使用ESRI公司提供的CaseTools将航空物探数据UML模型图转成空间数据库(Geodatabase)实体(图2-14)。

航空物探属性数据库表(二维表)是采用Power Designer数据库设计平台直接把数据库关系模型生成数据库脚本来创建的。

经过数据库的概念设计、逻辑设计和物理设计,最终生成航空物探数据库。

图2-14 航空物探数据库物理模型实现

八、空间数据的索引机制

对于海量的空间数据库而言,数据库的 *** 作效率是关系到数据库成败的关键问题。为了提高数据的访问、检索和显示速度,数据在加载到数据库时,要素类数据建立了空间索引,栅格数据构建了金字塔结构,对象类数据采用与数据库直接联接的访问机制。

(一)空间索引

为了提高要素类数据的查询性能,在建立航空物探空间数据库时,创建了空间索引机制。常用的空间索引有格网索引、R树索引、四叉树索引等。Geodatabase采用格网索引方式。所谓格网索引是将空间区域划分成适合大小的正方形格网,记录每一个格网内所包含的空间实体(对象)以及每一个实体的封装边界范围,即包围空间实体的左下角和右上角坐标。当用户进行空间查询时,首先计算出用户查询对象所在格网,然后通过格网编号,就可以快速检索到所需的空间实体。

确定适合的格网级数、单元大小是建立空间格网索引的关键。格网太大,在一个格网内有多个空间实体,查询检索的准确度降低。格网太小,则索引数据量成倍增长和冗余,检索的速度和效率较低。数据库的每一数据层采用不同大小、不同级数的空间索引格网单元,但每层最多级数不能超过三级。格网单元的大小不是一个确定性的值,需要根据对象的大小确定。空间索引格网的大小与检索准确度之间的关系如图2-15所示。

选择格网单元的大小遵循下列基本原则:

1)对于简单要素的数据层,尽可能选择单级索引格网。减少RDBMS搜索格网单元索引的级数,缩短空间索引搜索的过程,例如航迹线要素类。

图2-15 索引格网大小与检索准确度的关系

2)如果数据层中的要素封装边界大小变化比较大,应选择2或3级索引格网。Geodatabase最多提供三级格网单元。每一要素封装边界在适合的级内,减少了每一封装边界有多个格网的可能性。在空间索引搜索过程中,RDBMS则必须搜索所有3个格网单元级,这将消耗大量的时间。

3)若用户经常对图层执行相同的查询,最佳格网的大小应是平均查寻空间范围的15倍。

4)格网的大小不能小于要素封装边界的平均大小,为了减少每个格网单元有多个要素封装边界的可能性,格网单元的大小应取平均格网单元的3倍。最佳格网单元的大小可能受图层平均查询的影响。

空间域是按照要素数据集定义的,空间索引格网是按照要素类设置的。它们都是在创建Geodatabase数据库时设置,并一经设置,中间不许改变;所以一定要在充分分析数据的情况下确定它们的值。航空物探数据主要是简单要素类,空间跨度为70°。根据上述原则,航空物探数据选择单级索引格网,格网大小为20°。

(二)金字塔结构

金字塔结构的核心是将栅格数据逐级进行抽稀,形成多级分辨率的重采样数据,并将其分割成块,按一定的文件格式(金字塔文件格式)存储成磁盘文件;在以后进行图像显示处理时,只需将要显示的部分所覆盖的块从磁盘文件直接读进内存缓冲区显示即可。从金字塔的所有层中寻找与所要求显示的比例相近或匹配的一层,并将该层的从某一点起的一定范围的图像所覆盖的所有块加载到内存缓冲区,提取所需部分并形成图像。

金字塔算法(图2-16)是通过获取显示时所需要的一定分辨率的数据来提高显示速度。使用金字塔数据格式后,在显示全图时仅需要显示一个较低分辨率的数据,这样既能加快显示速度,又不会影响显示效果。放大图像,尽管显示图像分辨率提高,由于显示区域减小,所以显示速度不会下降。如果没有为栅格数据建立金字塔数据,则每次显示都会读取整个数据,然后进行重采样得到显示所需要的分辨率,明显地降低了显示速度。

图2-16 金字塔压缩示意图

金字塔数据重采样方式有:最近邻法、双线性内插和立方卷积。其中最近邻法适用于离散数据,而双线性内插法和立方卷积法适合于连续数据。

在ArcGIS Engine中提供了IRasterPyramid和IRasterPyramid2接口来实现金字塔数据的建立,而建立的数据保存在rrd格式的文件中。

(三)空间域定义

空间域是指数据的有效空间范围,即Geodatabase数据库的最大等效坐标的值域范围,其定义主要是指比例系数和Min X、Min Y的计算。

因为使用整数比浮点数有更高的压缩率,并且对整数进行二进制搜索比较快,所以多用户Geodatabase以4字节正整数存储坐标,其最大值为32位正整数所能表示的范围是214亿(2147483647),整数的范围称为空间域。在创建Geodatabase数据库时需要定义合适的比例系数。大的整数值将消耗大量的计算机物理内存,所以选定的比例系数最好不要大于必须的比例系数。空间域随坐标系的单位变化而变化。

比例系数和空间域之间成反比例关系,比例系数越大(存储单位越小),表达的空间域也越小。为了使目标数据都存储在系统中,需要谨慎地设置比例系数。将目标数据的宽度和高度较适中的数值乘以比例系数,如果结果小于214亿,则比例系数是合适的。

航空物探数据模型是为我国的航空物探行业数据建库设计的,它支持的空间数据的坐标范围为我国领土覆盖的海陆空间,最低纬度为赤道。根据概念设计的分析,航空物探数据模型采用的是地理坐标系,坐标系单位是度,基准是Beijing_1954,要求存储的坐标数据精度达到001 m。在赤道处,赤道圆周长为400756946 m,则每度弧长=400756946×100/360 cm=11132137389 cm,即1 cm对应8983000883E-8°。所以,航空物探数据模型的比例系数取为898E-8,即存储单位为898E-8°,可满足1 cm精度要求。

将空间域移动到目标数据范围之前,首先找到空间域在存储单位的中心位置,目的是在必要时向各个方向扩展。4字节正整数可表示的坐标范围:2147483647×898E-8=19284°。我国的领土范围是东经70°~140°,北纬0°~60°。所以,选取的比例系数是合适的。把空间域坐标系中心定为90°,然后,计算空间域的Min X、Min Y。

航空物探信息系统建设

航空物探信息系统建设

所以坐标的存储数据是:

航空物探信息系统建设

航空物探信息系统建设

目前最常用的三种数据模型为层次模型、网状模型和关系模型。

一、层次模型

层次模型将数据组织成一对多关系的结构,层次结构采用关键字来访问其中每一层次的每一部分。

层次模型发展最早,它以树结构为基本结构,典型代表是IMS模型。

优点是存取方便且速度快;结构清晰,容易理解;数据修改和数据库扩展容易实现;检索关键属性十分方便。

二、网状模型

网状模型用连接指令或指针来确定数据间的显式连接关系,是具有多对多类型的数据组织方式。

网状数据模型通过网状结构表示数据间联系,开发较早且有一定优点,目前使用仍较多,典型代表是 DBTG模型。

优点是能明确而方便地表示数据间的复杂关系。

三、关系模型

关系模型以记录组或数据表的形式组织数据,以便于利用各种地理实体与属性之间的关系进行存储和变换,不分层也无指针,是建立空间数据和属性数据之间关系的一种非常有效的数据组织方法。

优点在于结构特别灵活,概念单一,满足所有布尔逻辑运算和数学运算规则形成的查询要求;能搜索、组合和比较不同类型的数据;增加和删除数据非常方便。

扩展资料:

数据模型按不同的应用层次分成三种类型:分别是概念数据模型、逻辑数据模型、物理数据模型。

1、概念模型(Conceptual Data Model),是一种面向用户、面向客观世界的模型,主要用来描述世界的概念化结构,它是数据库的设计人员在设计的初始阶段。

2、逻辑模型(Logical Data Model),是一种面向数据库系统的模型,是具体的DBMS所支持的数据模型。

3、物理模型(Physical Data Model),是一种面向计算机物理表示的模型,描述了数据在储存介质上的组织结构,它不但与具体的DBMS有关,而且还与 *** 作系统和硬件有关。

参考资料:

数据模型-百度百科

以上就是关于什么是数据模型,包含哪几种类型 (数据库)全部的内容,包括:什么是数据模型,包含哪几种类型 (数据库)、数据模型是指用来描述数据的一组概念和定义,数据模型的三要素包括数据结构、数据 *** 作数据完整性约束、简述逻辑模型的特点等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/sjk/9375548.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-27
下一篇 2023-04-27

发表评论

登录后才能评论

评论列表(0条)

保存