Hadoop文件分片split的原理解析

Hadoop文件分片split的原理解析,第1张

block是物理块,文件存放到HDFS上后,会将大文件按照每块128MB的大小切分,存放到不同的DataNode上。备迟绝

split是逻辑上的分片,在MapReduce中Map开始之前,会将输入文件按照指定大小切分为多个小片,每一部分对应一个Map Task,默认split的大小与block的大小相同,为128MB。

在 FileInputFormat.getSplits 方法中对文件进行了Split:

split与block的对应关系可以是多对一旦棚,默认一对一:

上面说到的,当剩余大小大于split大小的1.1倍时,进行分仿姿片

我还没有想出问什么是1.1倍,我猜想是为了减少一些分片数量,比如这种情况?

小文件是指文件大小明显小于HDFS上块(block)迟慧大小(默认64MB)的文件。如果存储小文件,必定会有大量这样的小文件,否则你也不会带旦祥使用Hadoop(If you’re storing small files, then you probably have lots of them

(otherwise you wouldn’t turn to Hadoop)),这样的文件给hadoop的扩展性和性能带来严重问题。当一个文件的大小小于HDFS的块大小(默认64MB),就将认定为小文件否则就是大文件。为了检测输入文件的大小,可以浏览Hadoop DFS 主页 http://machinename:50070/dfshealth.jsp ,并点击Browse filesystem(浏览文件系统)。

首先,在HDFS中,任何一个文件,目录或者block在NameNode节点的内存中均以一个对象表示(元数据)(Every file, directory and block in HDFS is represented as an object in the namenode’s memory),而这受到NameNode物理内存蠢搏容量的限制。每个元数据对象约占150byte,所以如果有1千万个小文件,每个文件占用一个block,则NameNode大约需要15G空间。如果存储1亿个文件,则NameNode需要150G空间,这毫无疑问1亿个小文件是不可取的。

其次,处理小文件并非Hadoop的设计目标,HDFS的设计目标是流式访问大数据集(TB级别)。因而,在HDFS中存储大量小文件是很低效的。访问大量小文件经常会导致大量的寻找,以及不断的从一个DatanNde跳到另一个DataNode去检索小文件(Reading through small files normally causes lots of seeks and lots of hopping from datanode to datanode to retrieve each small file),这都不是一个很有效的访问模式,严重影响性能。

最后,处理大量小文件速度远远小于处理同等大小的大文件的速度。每一个小文件要占用一个slot,而task启动将耗费大量时间甚至大部分时间都耗费在启动task和释放task上。

Hadoop存档文件系统通常将HDFS中的多个文件打包成一个存档文件,减少namenode内存的使用

hadoop archive命令创建HAR文件

from:https://blog.csdn.net/sunnyyoona/article/details/53870077

在安装Hadoop集群的时候,我们在yarn-site.xml文件中配置了MapReduce的运行方式为yarn.nodemanager.aux-services=mapreduce_shuffle。本节就来详细介绍一下MapReduce的shuffle过程。

shuffle,即混洗、洗牌的意思,是指MapReduce程序在执行过程中,数据在各个Mapper(Combiner、Sorter、Partitioner)、Reducer等进程之间互相交换的过程。

关于上图Shuffle过程的几点说明:

说明:map节点执行map task任务生成map的输出结果。

shuffle的工作内容:

从运算效率的出发点,map输出结果优先存储在map节点的内存中。每个map task都有一个内存缓冲区,存储着map的输出结果,当达到内存缓冲区的阀值(80%)时,需要将缓冲区中的数据以一个临时文件的方式存到磁盘,当整个map task结束后再对磁盘中这个map task所产生的所有临时文件做合并,生成最终的输出文件。最后,等待reduce task来拉取数据。当然,如果map task的结果不大,能够完全存储到内存缓冲区,且未达到内存缓冲区的阀值,那么就不会有写临时文件到磁盘的 *** 作,也不会有后面的合并。

详细过程如下:

(1)map task任务执行,输入数据的来源是:HDFS的block。当然在mapreduce概念中,map task读取的是split分片。split与block的对应关系:一对一(默认)。

此处有必巧丛橡要说明一下block与split:

block(物理划分):文件上传到HDFS,就要划分数据成块,这郑袭里的划分属于物理的划分,块的大小可配置(默认:第一代为64M,第二代为128M)可通过 dfs.block.size配置。为保证数据的安 全,block采用冗余机制:默认为3份,可通过dfs.replication配置。注意:当更改块大小的配置后,新上传的文孝旁件的块大小为新配置的值,以前上传的文件的块大小为以前的配置值。

split(逻辑划分):Hadoop中split划分属于逻辑上的划分,目的只是为了让map task更好地获取数据。split是通过hadoop中的InputFormat接口中的getSplit()方法得到的。那么,split的大小具体怎么得到呢?

首先介绍几个数据量:

totalSize:整个mapreduce job所有输入的总大小。注意:基本单位是block个数,而不是Bytes个数。

numSplits:来自job.getNumMapTasks(),即在job启动时用户利用 org.apache.hadoop.mapred.JobConf.setNumMapTasks(int n)设置的值,从方法的名称上看,是用于设置map的个数。但是,最终map的个数也就是split的个数并不一定取用户设置的这个值,用户设置的map个数值只是给最终的map个数一个提示,只是一个影响因素,而不是决定因素。

goalSize:totalSize/numSplits,即期望的split的大小,也就是每个mapper处理多少的数据。但是仅仅是期望

minSize:split的最小值,该值可由两个途径设置:

最终取goalSize和minSize中的最大值!

最终:split大小的计算原则:finalSplitSize=max(minSize,min(goalSize,blockSize))

那么,map的个数=totalSize/finalSplitSize

注意: 新版的API中InputSplit划分算法不再考虑用户设定的Map Task个数,而是用mapred.max.split.size(记为maxSize)代替

即:InputSplit大小的计算公式为:splitSize=max{minSize,min{maxSize,blockSize}}

接下来就简答说说怎么根据业务需求,调整map的个数。

当我们用hadoop处理大批量的大数据时,一种最常见的情况就是job启动的mapper数量太多而超出系统限制,导致hadoop抛出异常终止执行。

解决方案:减少mapper的数量!具体如下:

a.输入文件数量巨大,但不是小文件

这种情况可通过增大每个mapper的inputsize,即增大minSize或者增大blockSize来减少所需的mapper的数量。增大blocksize通常不可行,因为HDFS被hadoop namenode -format之后,blocksize就已经确定了(由格式化时dfs.block.size决定),如果要更改blocksize,需要重新格式化HDFS,这样当然会丢失已有的数据。所以通常情况下只能增大minSize,即增大mapred.min.split.size的值。

b.输入文件数量巨大,且都是小文件

所谓小文件,就是单个文件的size小于blockSize。这种情况通过增大mapred.min.split.size不可行,需要使用FileInputFormat衍生的CombineFileInputFormat将多个input path合并成一个InputSplit送给mapper处理,从而减少mapper的数量。增加mapper的数量,可以通过减少每个mapper的输入做到,即减小blockSize或者减少mapred.min.split.size的值。

(2)map执行后,得到key/value键值对。接下来的问题就是,这些键值对应该交给哪个reduce做?注意:reduce的个数是允许用户在提交job时,通过设置方法设置的!

MapReduce提供partitioner接口解决上述问题。默认 *** 作是:对key hash后再以reduce task数量取模,返回值决定着该键值对应该由哪个reduce处理。这种默认的取模方式只是为了平均reduce的处理能力,防止数据倾斜,保证负载均衡。如果用户自己对Partition有需求,可以自行定制并设置到job上。

接下来,需要将key/value以及Partition结果都写入到缓冲区,缓冲区的作用:批量收集map结果,减少磁盘IO的影响。当然,写入之前,这些数据都会被序列化成字节数组。而整个内存缓冲区就是一个字节数组。这个内存缓冲区是有大小限制的,默认100MB。当map task的输出结果很多时,就可能撑爆内存。需将缓冲区的数据临时写入磁盘,然后重新利用这块缓冲区。

从内存往磁盘写数据被称为Spill(溢写),由单独线程完成,不影响往缓冲区写map结果的线程。溢写比例:spill.percent(默认0.8)。

当缓冲区的数据达到阀值,溢写线程启动,锁定这80MB的内存,执行溢写过程。剩下的20MB继续写入map task的输出结果。互不干涉!

当溢写线程启动后,需要对这80MB空间内的key做排序(Sort)。排序是mapreduce模型的默认行为,也是对序列化的字节做的排序。排序规则:字典排序!

map task的输出结果写入内存后,当溢写线程未启动时,对输出结果并没有做任何的合并。从官方图可以看出,合并是体现在溢写的临时磁盘文件上的,且这种合并是对不同的reduce端的数值做的合并。所以溢写过程一个很重要的细节在于,如果有很多个key/value对需要发送到某个reduce端,那么需要将这些键值对拼接到一块,减少与partition相关的索引记录。如果client设置Combiner,其会将有相同key的key/value对的value加起来,减少溢写到磁盘的数据量。注意:这里的合并并不能保证map结果中所有的相同的key值的键值对的value都合并了,它合并的范围只是这80MB,它能保证的是在每个单独的溢写文件中所有键值对的key值均不相同!

溢写生成的临时文件的个数随着map输出结果的数据量变大而增多,当整个map task完成,内存中的数据也全部溢写到磁盘的一个溢写文件。也就是说,不论任何情况下,溢写过程生成的溢写文件至少有一个!但是最终的文件只能有一个,需要将这些溢写文件归并到一起,称为merge。merge是将所有的溢写文件归并到一个文件,结合上面所描述的combiner的作用范围,归并得到的文件内键值对有可能拥有相同的key,这个过程如果client设置过Combiner,也会合并相同的key值的键值对,如果没有,merge得到的就是键值集合,如{“aaa”, [5, 8, 2, …]}。注意:combiner的合理设置可以提高效率,但是如果使用不当会影响效率!

至此,map端的所有工作都已经结束!

当mapreduce任务提交后,reduce task就不断通过RPC从JobTracker那里获取map task是否完成的信息,如果获知某台TaskTracker上的map task执行完成,Shuffle的后半段过程就开始启动。其实呢,reduce task在执行之前的工作就是:不断地拉取当前job里每个map task的最终结果,并对不同地方拉取过来的数据不断地做merge,也最终形成一个文件作为reduce task的输入文件。

1.Copy过程,简单地拉取数据。Reduce进程启动一些数据copy线程(Fether),通过HTTP方式请求map task所在的TaskTracker获取map task的输出文件。因为map task早已结束,这些文件就归TaskTracker管理在本地磁盘。

2.Merge过程。这里的merge如map端的merge动作,只是数组中存放的是不同map端copy过来的数值。Copy过来的数据会先放入内存缓冲区中,这里缓冲区的大小要比map端的更为灵活,它是基于JVM的heap size设置,因为shuffler阶段reducer不运行,所以应该把绝大部分的内存都给shuffle用。

merge的三种形式:内存到内存、内存到磁盘、磁盘到磁盘。默认情况下,第一种形式不启用。当内存中的数据量达到一定的阀值,就启动内存到磁盘的merge。与map端类似,这也是溢写过程,当然如果这里设置了Combiner,也是会启动的,然后在磁盘中生成了众多的溢写文件。第二种merge方式一直在运行,直到没有map端的数据时才结束,然后启动第三种磁盘到磁盘的merge方式生成最终的那个文件。

3.reducer的输入文件。不断地merge后,最后会生成一个“最终文件”。这个最终文件可能在磁盘中也可能在内存中。当然我们希望它在内存中,直接作为reducer的输入,但默认情况下,这个文件是存放于磁盘中的。当reducer的输入文件已定,整个shuffle才最终结束。然后就是reducer执行,把结果存放到HDFS上。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/tougao/12162648.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-21
下一篇 2023-05-21

发表评论

登录后才能评论

评论列表(0条)

保存