水解酸化池处理印染废水加什么酸

水解酸化池处理印染废水加什么酸,第1张

水解酸化-接触氧化工艺处理印染废水\摘要:印染行业是工业废水排放大户,本文对印染废水的处理方法进行归纳总结,着重介绍一种水解酸化—接触氧化法生化处理为主的印染废水处理方法。水解酸化—接触氧化法是近年提出的一种新型处理工业废水的方法。水解酸化串联接触氧化解决了印染废水中难降解物质多、单一传统活性污泥处理效果差的问题,这一工艺可产生较好的经济效益及处理效果,并且使其更易满足营养物质、温度、氨氮去除率的要求。本文试设计水解酸化—好氧生物接触氧化工艺处理高浓度印染废水。印染废水经工艺处理后CODcr去除率高达953%,SS去除率为925%,该工艺具有污泥少,耐冲击负荷能力强,难降解有机物去除率高等优点,在纺织印染废水处理中具有实用性。关键词:印染废水 水解酸化 生物接触氧化前言随着纺织工业的高速发展,印染废水已经成为水系环境的重点污染源之一染料是印染废水中的主要污染物,全世界投放市场的染料多达30000种,每年以废弃物的形式排放到环境中染料约为6×108kg。特别是近年来化学纤维织物的发展,纺真丝的兴起和印染后整理技术的进步使PVA染料,人造丝碱解物(主要是邻苯二甲酸类物质)新型助剂等难生化降解有机物大量进入印染废水,其COD浓度也由原先的数百毫克/升到2000~3000毫克/生,从而使得原有生物处理系统COD去除率从70%下降到50%左右,甚至更低,传统的生物处理工艺已受到严重挑战,传统的沉淀,气浮法对着类型的印染废水的COD去除率也仅为30%左右,因此,印染废水的经济有效的处理技术正日益成为当今环保的一大难题。[1]1废水来源及起特点印染废水的水质复杂,污染源按来源分为两类:一类来自纤维原料本身的夹带物,另一类是加工过程中所用的浆料,油剂,染料,化学助剂等。分析其废水特点,主要有以下方面:11 水量大,有机物污染物含量高,色度深,碱性和pH值变化大,水质变化剧烈。因此纤织物的发展和印染后整理技术的进步,使PVA染料,新型助剂等难以生化降解的有机物大量进入印染废水中,增加了处理难度

12由于不同染料,不同助剂,不同织物的染整要求,所以废水中的pH值,CODcr,BOD5,颜色等也各不相同,但其共同特点是BOD5/ CODcr值均很低,一般在20%左右,可生化性差,因此需要采取措施,使BOD5/ CODcr值提高到30%左右或更高些,以利于进行生化处理13印染废水的碱减量废水,其CODcr值有的可达10万mg/L以上,pH≥12,因此必须进行预处理,把碱收回,并投加酸降低pH值,经预处理达到一定要求后,再进入调节池,与其他的印染废水一起进行处理14 印染废水的另一个特点是色度高,有的可达4000倍以上。所以印染废水处理的重要任务之一就是进行脱色处理,为此需要研究和选用高效脱色菌,高效脱色混凝剂和有利于脱色的处理工艺15 印染行业中,PVA染料和新型助剂的使用,使难生化降解的有机物在废水中含量大量增加,特别是PVA染料造成的CODcr含量占印染废水总CODcr的比例相当大,而水处理用的普通微生物对着部分CODcr很难降解。因此需要研究和筛选用来降解PVA的微生物。此外,因生产的间断运行,故存在着水量水质的波动,对于大量使用还原染料,硫化染料,冰染料等的废水,其化学絮凝效果相对较差,因此处理工艺要考虑到这些因素,要有一定的适应水量水质负荷变化的能力。[2]2印染废水处理方法目前印染废水的处理方法有:物化处理法(其中包括吸附法、过滤法)、化学处理法(其中包括絮凝沉淀法、电化学法、化学氧化法、光化学氧化法)、生化法、物化-生物联合法等。虽然治理的方法有很多,但是上述几种方法也不乏存在一定的缺点。比如吸附剂容易饱和,处理效果随时间的延长而下降;吸附剂的再生或更换较麻烦、费用较高,再生废液以及饱和废弃的吸附剂容易造成二次污染。超滤技术是近年来发展的另一种新型的水处理技术,超滤的本质是一种筛滤的过程,此法不会产生副作用,可以使水循环使用,但此法只能处理所含染料分子粒径较大的印染废水。

3水解酸化-接触氧化工艺31 工艺原理水解酸化-接触氧化即不是单纯的好氧也不是单纯的厌氧,而是两者的结合。在这一阶段中,固体物质可被降解为溶解性的物质,难分解的大物质被降解成小分子物质,水解酸化阶段对废水中CODcr的去除率为20%~25%左右,对于一般的印染废水,经过这一阶段后差不多都可达到生化的要求。接触氧化池内设有填料,部分微生物以生物膜的形式固着生长于填料表面,部分则是絮状悬浮生长于水中,因此,它兼有活性污泥法与生物滤池二者的特点。池内微生物所需的氧通过入口曝气供给,经过生物膜的新陈代谢,其每个阶段都是同时存在的,这使去除有机物的能力稳定在一定的水平上。[3]32 工艺特点1) 水解池可取代初沉池2) 具有较好的抗有机负荷冲击能力3) 水解过程可改变污水中有机物形态及性质有利于后续氧化处理4) 低温条件下,仍有较好的去除效果5) 采用组合工艺,保证出水水质稳定达标6) 运行可靠, *** 作简便,投资省,运行成本低33处理效果根据以往的实例,通过该工艺处理的废水,出水水质基本稳定。其中,水解酸化池在改善废水的可生化性及提高废水中营养源比例方面作用显著。水解酸化对废水中有机物的降解只是一种预处理工艺,在对易降解有机物截留、降解的同时,对难降解大分子有机物只是将其化学形态加以改变使之成为易降解的小分子物质。由于水解酸化将大分子难降解物质变为小分子易降解物质,有机氮化合物在氨化菌的作用下分解转化为氨态氮,而氨态氮则是微生物较易利用的营养源。经水解酸化后BOD5:N:P一般都可维持在100∶5∶1,较好地保证了生物接触氧化系统中细菌对营养的需求。[4]设计方案1工程概况现假设某染织有限公司是一家从沙线到成衣一条龙生产线的企业,在该公司的生产过程中产生浆染废水、漂染废水、后整理废水以及印染废水,其中有机物浓度和色度教高需进行处理后才能排放。2方案编制依据21 《纺织染整工业水污染物排放标准》(GB4287-2012)

22 《污水综合排放标准》(GB8978-1996)23 《室外排水设计规范》(GBJ14-92)24 《混凝土结构设计规范》(GB50010)25 《给水排水工程构筑物结构设计规范》(GB50069-2002)26 《环境污染治理工程设计手册》(水污染处理卷)3 方案编制原则31 在保证处理出水达标的基础上,做到降低运行费用和减少投资费用,达到环境和经济效益的完美统一。32 污水处理工艺执行清污分离的原则,高浓液实行分质预处理。33 工艺既有先进性,又具有运行稳定和安全可靠性,保证出水达到排放要求。34 处理设施具有较高的运行率,以较为稳定的处理手段完成工艺要求,并有一定的抗冲击负荷能力。35 *** 作运行简单,维修方便。4 规模及进出水水质41水量 3000m3/d42 进水水质43出水水质达到《纺织染整工业水污染物排放标准》(GB4287-92)I级标准即CODCr(mg/L)≦100 BOD5(mg/L)≦25 SS(mg/L)≦60 PH 6~9 色度≦705 处理工艺选择纺织印染废水的水质比较复杂,含有大量的碱性物质;含有大量残余染料和助剂,色度较深;有机物含量大,悬浮物多,且含有微量的有害物质;水量不均衡排放,是较难处理的工业废水之一。国内过去大多采用物化或生化直接处理,但随着近来大量新的化学浆料(PVA)染化料和整染剂的采用,增加了废水的化学惰性,降低其可生化降低性能,使其处理带来了较大的困难。针对该公司的废水特性,拟订了如下的工艺路线:高浓度染色废水中含有大量难生物降解及抑制微生物生长的有害物质,对该废水单独采用混凝脱色处理,去除废水中部分有机污染物和色度,降低其对生化处理的毒性,为后续处理创造条件。该法在印染废水处理中得到了广泛应用,并取得了较好的处理效果。针对印染废水可生化较差的特点,拟采用水解酸化工艺来提高废水的可生化性,水解酸化是利用厌氧过程中的水中酸化阶段产酸菌的作用将废水中部分燃料苯环及长链大分子物质的分子键在水中酶作用下断开,使苯环打开,大分子物质断裂为小分子,不溶性有机物转化为可溶性有机物,难降解有机物转化为可降解或易生化降解的有机物,从而达到脱色,降低色度,降低PH值,减轻后续处理设施负荷。

生化处理拟采用生物接触氧化池,在池内没有填料,部分微生物以生物膜的形式固着生长于填料表面,部分则是絮状悬浮生长于水中。同时,它兼有活性污泥法与生物滤池二者的特点。生物接触氧化池中微生物所需的氧通过入口曝气供给、生物膜生长至一定厚度后,近填料壁的微生物将由于缺氧而进行厌氧代谢,产生的气体使曝气形成的冲刷作用会造成生物膜的脱落,并促进新生膜的生长,形成生物膜二次新陈代谢,脱落的生物膜将随出水流出池外。所以生物膜发展在每个阶段都是同时存在的,使去除有机物的能力稳定在一定水平上,生物膜在池内呈立体结构,对保持稳定的处理能力很有利,而且该池不存在污泥膨胀问题,污泥沉降性能好。根据我国近年来印染废水处理工艺运行中的经验和教训,采用物化加生化处理结合的联合处理工艺,是行之有效的,同时考虑到,印染废水的BOD/COD比值较小、可生化性较差的特点,采用水解酸化来改善废水的可生化性,经过大量实践证明可明显提高废水的可生化性,提高生化处理效果。[5][6]6 废水处理工艺流程说明车间排放出的浆染废水,经过一号隔栅井,去出较大的杂物和漂浮物后,进入集水井。在集水井中进行预曝气,并调节PH值。停留一定时间后物质均量,然后将废水利用泵提升。经过管道混合器投加高效絮凝剂和助凝剂,经过充分混合反应后流入一号斜板沉淀池进行泥水分离,去处色度和一定量的COD。一号斜板沉淀池出水已经2号隔栅井去处杂物后的废水进入调节池,在调节池通过潜水搅拌器进行搅拌混合达到均衡水质水量。调节池出水通过污水泵提升,经过管道混合器时投加高效絮凝剂和助凝剂,经充分混合反应后流入2号斜板混凝池进行泥水分离,去除部分色度,降低COD的量。经物化处理的水流入水解氧化池。水解酸化池中放置潜水搅拌机,保持兼氧微生物与废水充分接触,以进一步均衡水质,同时通过水解酸化作用使一些复杂的难降解的大分子物质分解为易降解的小分子物质,为后续好氧生化处理创造条件,同时去除大部分的色度。经过水中酸化池后的废水流入生物接触氧化池,在此过程中,废水通过微生物的降解,去除大部分污染物质,进一步降解COD、BOD和色度。鼓风机产生的压缩空气内管道输送到池内,通过微孔曝气器时废水进行鼓风曝气,供给微生物呼吸所需的氧气。经过曝气后的废水进入二沉池,沉淀一定时间后处理水即可计量排放。

二沉池的污泥一部分回流污泥至水解酸化池进行消化,以减少污泥的处理负荷,一部分回流至生物接触氧化池以保证池内微生物的浓度。1号和2号斜板沉淀池、水解酸化污泥进入污泥浓缩池,浓缩后的污泥进入污泥反应池,在污泥反应池中投加改性药剂来提高其透水性。改性后的污泥进入压滤机进行压滤脱水,泥饼外运,压滤水和浓缩池上清液回流至调节池重新处理。7 工艺原理及工艺特点71 水解酸化池染织厂废水的可深化性一般,并且水中的有机物对微生物有一定的抑制作用。若未经预处理直接进行好氧生化处理,出水效果不理想。根据以往对染整污水处理的经验,采用水解酸化工艺可将染织废水中的大分子、难降解的有机物转化为小分子的有机物。提高污水的B/C化,便于提高后续处理工艺去除率。同时降低大部分色度。由于水解酸化提高了污水的可生化性,因而水解酸化—生物接触氧化工艺使用范围广,可适应各种印染废水。水解酸化过程中起作用的细菌为水解细菌、产酸菌,均在无氧条件下,不需要动力曝气。因而水解酸化池能在无能耗的条件下将有机物大部分降解。但水解酸化工艺不等于厌氧消化,厌氧发酵过程分为四个阶段:第一阶段—水解阶段;第二阶段—酸化阶段;第三阶段—酸化衰减阶段;第四阶段—甲烷化阶段。本工艺采用的水解酸化池是将反应控制在第二阶段完成,不进入第三阶段。水解酸化较全过程的厌氧消化具有以下优点:1) 不需要密闭的反应器,不需要水,气,固三相分离器,降低了造价并便于维护,可以设计出适应大,中,小型污水厂所需的构筑物。2) 由于反应控制在第二阶段完成之前,故出水无厌氧发酵所具有的不良气体,改善污水处理厂的环境。3) 由于第一阶段,第二阶段反应进行迅速,故水解池体积较小,与一般初次沉淀池相当,可节省基建投资。4) 抗冲击负荷,防止好氧工段的污泥膨胀5) 具有脱磷除氮作用,同时节约能耗[7]本设计方案水解酸化池有反应区,填料区和沉降区组成,污水由水解酸化池底部进入反应池,通过污泥床,水解酸化池底部设有潜水搅拌器,通过搅拌器使泥水充分混合,加大接触面积,大量微生物将进水中的颗粒物质和胶体物质迅速截留和吸附,这个物理过程的快速反应,一般只要几秒钟即可完成,截留下来的物质吸附在水解污泥的表面,慢慢的被分解代谢,其在系统内的污泥停留时要大于水力停留时间,部分污染物质在通过填料上微生物吸附降解,在大量水解细菌的作用下将不溶性有机物水解为溶解性物质,同时在产酸菌的协同作用下将大分子物质,难于生物降解物质转化为易于生物降解的小分子物质,重新释放到液体中,在较高水力负荷下随水流出系统,进水好氧部分降解,由于水解和产酸菌世代周期较短,往往以分钟和小时计,因此,这一降解过程也是迅速的,可以看出,水解酸化池集沉淀,吸附,生物絮凝,生物降解功能于一体,能大大提高污水的可生化性和去除污水中的COD及色度。[8]

72生物接触氧化池由于水解酸化处理后的废水的COD值不高,同时B/C比有所提高,可以采用接触氧化法去除剩余的有机物,由于预处理提高了废水的可生化性,为保证废水处理的效果,在此过程中,废水同生物膜接触,通过厌氧菌的不断繁殖,新陈代谢,旧的生物膜脱落,新的生物膜又生长起来,由于填料表面积较大,所以生物膜的发展的每个阶段都是同时存在的,使去除的有机物的能力稳定在一定水平上,通过微生物的降解,去除了大部分污染物质,进一步降低COD,BOD和色度。[9][10]73曝气方式本设计采用低噪声三叶罗茨风机与穿孔曝气方式,其中风机选用罗茨鼓风机,该风机具有技术先进,体积小,重量轻,流量大,噪声低,运行平稳等显著特点。74工艺特点总结1) 工艺设计参数结合了理论计算和污水处理实验结果,处理效率更可靠2) 废水经过一次提升,控制点仅为物化处理的pH值和生化处理中的DO值3) 利用无能耗的水解酸化池降解部分有机物,改善废水的可生化质4) 抗冲击负荷能力强,处理效果好,氧利用率高5) 采用组合工艺,保证出水水质稳定达标6) 本工艺运行可靠, *** 作简便,投资省,运行成本低[11][12]8 单元处理效果预测9 主要构筑物设计参数91水解酸化池平面尺寸:75×14m 有效水深:6m有效容积:625m3 停留时间:5h92 生物接触氧化池(分六格)平面尺寸:32×32m(每格)有效水深:65m有效容积:168m3(总) 接触时间:1344h气水比:15:1 污泥负荷:03kgBOD5/kgMLssd10 主要设备选型101 潜水搅拌机(四台)型号:QJB5/12-620/3-480/s配用功率:50kw额定电流:182A 重量:184kg功能:用于水解酸化池废水和兼氧性污泥的混合,控制泥水分离;防止颗粒在池壁和池底的凝结沉淀102 鼓风机(四台,两备两用)型号:TSE-200 配用功率:30kw

流量: 2010m3/min重量:1120kg配套电机型号:Y250M-8功能:用于生物接触氧化池中活性污泥呼吸所需的氧,同时鼓风机产生的送风压力起到搅拌,混合的作用,保持微生物的悬浮状态,使微生物与废水充分接触103 TL-200mm立体d性填料规格:φ200mm功能:用于水解酸化池兼氧菌挂膜,计算填料体积为182m3104HYG型软性纤维填料规格:φ180-80功能:用于生物接触氧化池挂膜,计算填料体积为18432m3[13]11 二次污染防治111 噪声控制1111主要噪声源本设计方案主要噪声源是四台三叶罗茨风机,同时满负荷运转时,噪声级可达90多分贝。1112治理措施每台风机排风口安装YHZ型罗茨鼓风机消声器一只,送风管道上接橡胶补偿管一只,风机底座安装减振设施。112 污泥处置经浓缩池浓缩,然后脱水,通过压滤机压成泥饼,最终污泥泥饼可掺和在煤炭中焚烧,亦可外运至综合垃圾场填埋,减少污染。12 结构设计构筑物采用钢筋混凝土结构,池底池壁,走道砼等级为C25,,垫层砼为C10,池体砼的抗渗等级为S6;钢材采用A3钢。[14]结束语目前由于印染废水组分复杂,所以单一应用某种工艺很难处理达标,故实际应用总多采用组合工艺,本工艺通过水解(酸化)池可将难生化降解的有机物转化为可生化处理的有机物,将难降解的大分子有机物转变为易降解的小分子有机物,提高了污水的可生化性,即BOD/COD的值,为后续好氧生物处理提供较好的条件,而且污水经水解(酸化)后其溶解氧很低,亏氧值余增大,可提高好氧生物处理段氧的利用率。该系统出水水质稳定,能承受一定的冲击负荷,剩余污泥量较少,可以从传统的处理工艺中取消污泥消化池,在停留时间相近和设备增加不多的情况下,水解(酸化)池可取代初沉池,也可把初沉池改造成水解(酸化)池, 故水解(酸化)—好氧生物处理工艺具有很大的发展潜力。参考文献

[1] 黄川,刘元元 印染工业废水处理的现状[J] 重庆大学报,2001,11[2] 张卯均等编 三废治理与利用[M] 北京:冶金工业出版社,1995[3] 彭继伟、邵云海、王军改良厌氧——生物接触氧化处理纺织印染废水[J] 工业水处理20027[4] 王昂 水解酸化——接触氧化串联反应器在处理化工废水中的应用[J] 南阳师范学院学报 20028[5] 刘佑泉 水解-好氧工艺处理针织印染废水[J]江苏环境科技,20033[6]朱月海 印染废水处理工艺及浅析[J]给水排水,2000[7]杨书铭,黄长盾编纺织印染工业废水治理技术[M]北京:化学工业出版社,环境科学与工程出版社,20024[8]刘帅霞,何松 水解酸化-生物接触氧化工艺处理印染废水[J]中国给排水200211[9] 石虹、任志钧 好氧生物接触氧化工艺在污水处理中的应用[J] 山西建筑20018[10] 丁春生、王卫文 大型针织印染废水处理工程的设计与运行[J]环境工程,20018[11]金兆丰,余志荣编污水处理组合工艺及工程实例[M]北京:化学工业出版社,环境科学与工程出版中心,2003[12]杨岳平,徐新华,刘传富编 废水处理工程实例分析[M]北京:化学工业出版社,环境科学与工程出版中心,2003[13]史惠祥编 实用环境工程手册-污水处理设备[M] 北京:化学工业出版,200210[14]闫波环境土建工程[M]北京:化学工业出版社,2003

59

百度文库VIP限时优惠现在开通,立享6亿+VIP内容

立即获取

水解酸化-接触氧化工艺处理印染废水

水解酸化-接触氧化工艺处理印染废水

\摘要:印染行业是工业废水排放大户,本文对印染废水的处理方法进行归纳总结,着重介绍一种水解酸化—接触氧化法生化处理为主的印染废水处理方法。水解酸化—接触氧化法是近年提出的一种新型处理工业废水的方法。水解酸化串联接触氧化解决了印染废水中难降解物质多、单一传统活性污泥处理效果差的问题,这一工艺可产生较好的经济效益及处理效果,并且使其更易满足营养物质、温度、氨氮去除率的要求。本文试设计水解酸化—好氧生物接触氧化工艺处理高浓度印染废水。印染废水经工艺处理后CODcr去除率高达953%,SS去除率为925%,该工艺具有污泥少,耐冲击负荷能力强,难降解有机物去除率高等优点,在纺织印染废水处理中具有实用性。

聚乙烯醇本身就溶于水,谈何乳化,它溶于水,主要作用是起到增加粘度和提高成膜性的。

如果说到乳化,主要是考虑两个方面

一是 HLB值 每种物质和水乳化 需要的HLB值是不同的,这是选择乳化剂的主要根据,

二是 确定乳化类型,是油包水型 还是水包油型。

如果你所说的乳化是要修成 聚乙烯醇乳浊液的话,建议添加一定量的无机盐,如氯化钠试试,通过盐析作用应该可以形成乳浊液。

按我说的做,应该好使,但要控制好无机盐的含量,也就是浓度

至于这个浓度,在不经过试验的情况我想没有任何一个人有确定的数据,我建议你把氯化钠溶解于水,配成已知浓度氯化钠溶液,然后你自己试着渐渐滴加入聚乙烯醇溶液中,达到你要的标准,然后计算浓度

刘学鹏1,2 张明昌1 张林海1 丁士东1 刘 伟1

(1中国石化石油工程技术研究院,北京 100101;

2中国石油大学(北京)石油工程学院,北京 102249)

摘 要 目前,对油井水泥降失水剂作用机理的研究认识多是推测,没有详细的数据支撑。本文从失水量、滤液黏度和滤饼结构等试验数据出发,解释了聚乙烯醇降失水剂的作用机理。研究结果表明,聚乙烯醇降低失水量的主要影响因素不是其对水泥浆液的增黏作用,而是其对滤饼渗透率的降低,即在滤饼和过滤介质表面形成一层致密聚合物膜。

关键词 油井水泥 降失水剂 聚乙烯醇 作用机理

Mechanisms Involved in Fluid Loss Control of Oil-well

Cement Slurries by Polyvinyl Alcohol

LIU Xuepeng1,2 ZHANG Mingchang1,ZHANG Linhai1,DING Shidong1,LIU Wei1

(1Research Institute of Petroleum Engineering,SINOPEC,Beijing 100101,China;

2School of Petroleum Engineering,China University of Petroleum(Beijing),

Beijing 102249,China)

Abstract Nowadays,most of knowledge about the function mechanisms of fluid loss control agent is a conjecture without the support of laboratory dateIn this paper,the function mechanisms of polyvinyl alcohol (PVA)was first systematically discussed by determining the quantity of fluid-loss,filtrate viscosity and the electrophoretic mobility of filter cake finesThe results show that main factors in FL reduction by PVA is not viscosifying effect but reduction in filter cake permeability:a tough,monolithic and compact polymer film is formed on the filter membrane surface under the filter cake so that the FL is not increased notably meanwhile the film formed with PVA starts to destroy and this results in abrpt increase of FL

Key words Oil-well cement;fluid-loss additive;polyvinyl alcohol;functioning mechanisms

油井水泥降失水剂是一种能控制水泥浆中液相向渗透性地层滤失,从而保持水泥浆适当水灰比的材料,其对保证固井质量和保护油气层起着重要的作用[1,2]。聚乙烯醇(PVA)油井水泥降失水剂具有价格适中、对水泥浆缓凝时间和抗压强度影响小且有一定的成膜防气窜作用等优点,有很好的应用前景[3,4]。

本文以自合成的耐温120℃的非离子聚合物降失水剂聚乙烯醇PVA-120为对象,同时以耐温160℃的阴离子型(AMPS/AM/AA)共聚物降失水剂JHW-160为参照,结合陈涓等[3]的研究思路方法,进一步阐明聚乙烯醇类降失水剂的作用机理,尝试为深入探讨降失水剂作用机理提供一种系统性的研究思路。

1 实验部分

11 仪器

1)常压稠化仪,沈阳航天工业研究院生产。

2)高温高压降失水仪,沈阳航天工业研究院生产。

3)Zeta电位仪,上海中晨公司生产,JS94H型。

12 样品

JHW-160,工业产品,以丙烯酸(AA)、丙烯酰胺(AM)、2-丙烯酰胺基-2-甲基丙烷磺酸钠(AMPS)聚合而成三元共聚物;PVA-120,工业产品,以聚乙烯醇17-88经醛交联得到。

2 结果与讨论

21 失水量与加剂量及滤液黏度的关系

表1是降失水剂加量对水泥浆失水量和滤液黏度影响的测量数据。

表1 降失水剂加量对水泥浆失水量和滤液黏度的影响

注:“-” 表示没有进行数据测量。

从表1中可以看出,JHW-160随着剂量的增加,失水量逐渐减小。而PVA-120在加量小于04% BWOC时,失水量很大,随着加量进一步增大,失水量从951mL·30min-1急剧降至34mL·30min-1,这种现象称作“门限效应”。当进一步增加降失水剂量时,失水量不再明显降低。由此可见,PVA-120与JHW-160二者的失水规律不同,降失水机理也不相同。数据结果与文献报道一致[3]。

从表1中可以看出PVA-120的滤液黏度随加量变化不明显,而JHW-160的滤液黏度随着加量增大逐渐增加,表现出相关性。当PVA-120的加量从03%BWOC增加到04%BWOC时失水量从951mL·30min-1急剧降至34mL·30min-1,而滤液黏度几乎没有任何变化,这说明滤液黏度不是聚乙烯醇降失水剂PVA-120能够控制水泥浆失水的原因;相反,对于离子聚合物类降失水剂JHW-160来说,聚合物黏度或浓度的作用是不可忽视的,随着加量的增加,加有JHW-160的水泥浆滤液黏度逐渐增加,失水量逐渐减小。

22 失水量与吸附量的关系

当PVA-120加量在04%BWOC时,75℃的失水量为34mL·30min-1;而加量在03%BWOC时,却不能控制失水。因此选用这两个加量点,考察二者在水泥颗粒表面的吸附量差异,结果见表2。

表2 PVA-120在水泥颗粒表面的吸附

试验结果表明,PVA-120在水泥颗粒表面的吸附量极低,远远小于降失水剂的加量。同时,当PVA-120加量在04%BWOC和03% BWOC时,二者在水泥颗粒表面的吸附量没有太大差别,而二者的失水分别为34mL·30min-1和951mL·30min-1。说明吸附在水泥颗粒表面的聚乙烯醇,不是PVA-120起降失水作用的主要原因。

23 失水量与滤饼电性质的关系

将滤饼重新分散在去离子水中测定滤饼颗粒的电泳迁移率,得到表3所示数据。

表3 失水量与滤饼颗粒的电泳迁移率的关系

研究PVA-120和JHW-160的滤饼可知,当PVA-120能控制住失水时,在滤饼与过滤介质的交界处形成一层厚度小于1mm的具有一定韧性的致密聚合物薄膜;同时在薄膜上层有一层较薄的滤饼,滤饼内部可见明显的不完整的薄膜夹层;而JHW-160只形成滤饼,且加剂量越大,失水量就越小,滤饼也会更薄。

分别将加有两种聚合物水泥浆失水试验得到的滤饼重新分散在去离子水中测定滤饼颗粒的电泳迁移率。发现加有PVA-120的水泥滤饼的电泳迁移率随加剂量增加变化不大,且与净浆滤饼的数值基本一致,说明滤饼的电性质没有改变,其降失水作用与此无关。这主要是由于PVA-120是非离子聚合物,不是以静电力作用吸附于水泥颗粒表面。而对于JHW-160随着加量增大,滤饼的电泳迁移率会由净浆的正值变为负值,同时当加量逐渐增大时,电泳迁移率的绝对值会更大,说明随着JHW-160的加入,水泥颗粒表面的电性质发生了本质上的改变,这种改变势必会对滤饼结构、润湿性等产生影响,进而对控制失水产生作用。研究结果与文献一致[3]。

24 失水量与滤膜的关系

研究结果表明,在滤饼与滤网处形成的致密聚合物薄膜是聚乙烯醇类降失水剂控水的关键,只要达到形成薄膜所需的聚合物浓度,失水量就不会有明显变化。要想进一步降低失水,就必须要了解这层薄膜的结构组成和形成过程。

从电子显微镜下(图1)我们可以清楚地看到滤膜的全貌结构图,进行局部放大可以看到滤膜是由许多粒径小于100μm的颗粒相互堆积而成的,在颗粒间有粘连结构。推测滤膜的形成是由PVA分子和水泥颗粒共同组成的整体,其中水泥颗粒相互堆积,并以PVA分子相互粘连。同时,水相法激光粒度仪测量水泥颗粒粒径分布的结果(D50=174μm)显示水泥颗粒的粒径确实是主要分布在100μm以下,这与电子显微镜下观察到的粒径大小基本吻合。

图1 聚乙烯醇降失水剂滤膜结构电镜显微照片

当滤膜形成后,水泥浆的失水状态得到明显改善,失水量会瞬间减少,但是依然会有少量流出。这可能是由于滤膜结构是由水泥颗粒堆积而成,而水泥颗粒的直径分布显示其中粒径小于1μm的颗粒很少,这样滤膜上颗粒堆积会留有一些小的空隙不能被有效封堵(在电镜图中表现为黑色空洞),它们一旦串通就会表现为失水量的不断增加。推测,如果加入小粒径的材料封堵住这部分空隙,失水量将减小。

固定PVA-120加量为08%BWOC,采用05%缓凝剂DZH -2、水灰比044、嘉华G级水泥的基浆配方,在100℃测定其失水量为172mL,见表4。由于水泥的粒径主要分布在1~100μm,所以分别选用中等粒径的材料超细硅粉(D50=83μm)和小粒径材料纳米锰粉(D50=09μm),考察其对失水量的改善效果,结果见表4。

表4是100℃时3次试验的平均值。从数据结果看,随着加入材料粒径的减小,失水量逐渐减少。这也证明了改善滤膜堆积空隙结构能够提高其控失水效果的推测。

表4 加入小粒径材料后的失水数据

25 降失水剂的作用机理

油井水泥浆降失水剂作为油井水泥外加剂中最重要的一类外加剂,其使用直接关系到固井施工的成败和油井寿命、产能等一系列问题。目前应用较多的是阴离子聚合物体系(以AMPS为主要单体)和非离子聚合物体系(含胶乳体系和聚乙烯醇体系)。通过上文研究,进一步证明了这两类降失水剂的作用机理是不同的。阴离子聚合物体系是通过改变滤饼电性、增加游离液黏度实现控水的;在滤饼与滤网处形成致密聚合物薄膜是聚乙烯醇类降失水剂控水的关键。

3 结论

1)阴离子聚合物JHW-160是通过改变滤饼电性、增加游离液黏度实现控水的。

2)在滤饼与滤网处形成致密聚合物薄膜是聚乙烯醇类降失水剂PVA -120控水的关键。

3)增强聚乙烯醇类降失水剂滤膜的耐温性、改善滤膜的结构才是提高其抗温性能、增加其降失水效率的关键。

参考文献

[1]Plank J,Dugonjić-Bilić F,et alWorking mechanism of poly(vinyl alcohol)cement fluid loss additive[J]Journal of Applied Polymer Science,2010,117(4):2290~2298

[2]张明昌固井工艺技术[M]北京:中国石化出版社,2007

[3]陈涓固井水泥降失水剂结构与性能关系的研究[D]中国石化石油化工科学研究院博士论文,2002

[4]彭雷,房恩楼,张敬涛,等交联聚乙烯醇的防窜机理及应用[J]钻井液与完井液,2007,24(3):39~44

[5]谢惠波重铬酸钾氧化法测定伯、仲醇[J]四川化工,1996,2:32~33

[6]陈涓,彭朴,汪燮卿化学交联聚乙烯醇的降滤失机理[J]油田化学,2002,19(2),101~104

聚乙烯醇有4个分类,分别代表:

1、PVA 17-88简称PVA 17-88

水溶液在室温下随时间粘度逐渐增大.但浓度为8%时的粘度是绝对稳定的,与时间无关,届特殊现象c聚乙烯醇成膜性好,对除水蒸气和氨以外的许多气体有高度的不适气性。耐光性好,不受光照影响。通明火时可燃烧,有特殊气味。水溶液在贮存时,有时会出现毒变。对人体皮肤无刺激性。

2、聚乙烯醇17-92简称PVA 17-92

白色颗粒或粉末状。易溶于水,溶解温度75~80℃。其他性能基本与PVA17-88相同。用作乳液聚合的乳化稳定剂。用于制造水溶性胶粘剂。贮存于阴凉、干燥的库房内,防火、防潮。

3、聚乙烯醇17-99又称浆纱树脂,简称PVA17-99。

白色或微**粉末或絮状物固体。玻璃化温度85℃,皂化值3~12mgKOH/g。溶于90~95℃的热水,几乎不溶于冷水。浓度大于l0%的水溶液,在室温下就会凝胶成冻,高温下会变稀恢复流动性。为使粘度稳定,可于溶液中加入适量的硫氰酸钠,硫氰酸钙、苯酚、丁醇等粘度稳定剂。

PVA17-99溶液对硼砂引起凝胶比PVA17-88更敏感,溶液质量的0.1%的硼砂就会使5%PVA17-99水溶液凝胶化,而引起同样浓度PVA 17-88水溶液凝胶化的硼砂量则需1%。对于相同浓度、相同醇解度的聚乙烯醇水溶液,硼砂比硼酸更易发生凝胶。

4、聚乙烯醇17-99B简称PVA 17-99

主要用于制造高粘度聚乙烯醇缩丁醛.广泛用作浆纱料的分散剂等。其他类型的17-99用作聚醋酸乙烯乳液聚合的乳化稳定剂,但效果不如17-88,一般是将17-99与17-88混合使用。

17-99用于制造聚乙烯醇缩甲醛水溶液。17-99还用于制备耐苯类溶剂的密封胶。贮存于阴凉、干燥的库房内,防潮、防火。

扩展资料:

*** 作注意事项:提供良好的自然通风条件。 *** 作人员必须经过专门培训,严格遵守 *** 作规程。建议 *** 作人员佩戴自吸过滤式防尘口罩,戴化学安全防护眼镜,穿防毒物渗透工作服,戴橡胶手套。远离火种、热源,工作场所严禁吸烟。

使用防爆型的通风系统和设备。避免产生粉尘。避免与氧化剂接触。搬运时要轻装轻卸,防止包装及容器损坏。配备相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有害物。

储存注意事项:储存于阴凉、通风的库房。远离火种、热源。应与氧化剂分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备有合适的材料收容泄漏物。

参考资料来源:百度百科-聚乙烯醇

以上就是关于水解酸化池处理印染废水加什么酸全部的内容,包括:水解酸化池处理印染废水加什么酸、聚乙烯醇怎样乳化、聚乙烯醇降失水剂的作用机理研究等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/web/9292983.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-26
下一篇 2023-04-26

发表评论

登录后才能评论

评论列表(0条)

保存