室内定位技术都有哪些

室内定位技术都有哪些,第1张

超声波技术

超声波定位目前大多数采用反射式测距法。系统由一个主测距器和若干个电子标签组成,主测距器可放置于移动机器人本体上,各个电子标签放置于室内空间的固定位置。定位过程如下:先由上位机发送同频率的信号给各个电子标签,电子标签接收到后又反射传输给主测距器,从而可以确定各个电子标签到主测距器之间的距离,并得到定位坐标。

红外线技术

红外线是一种波长间于无线电波和可见光波之间的电磁波。典型的红外线室内定位系统Activebadges使待测物体附上一个电子标识,该标识通过红外发射机向室内固定放置的红外接收机周期发送该待测物唯一ID,接收机再通过有线网络将数据传输给数据库。这个定位技术功耗较大且常常会受到室内墙体或物体的阻隔,实用性较低。

超宽带技术

超宽带技术是近年来新兴的一项无线技术,目前,包括美国,日本,加拿大等在内的国家都在研究这项技术,在无线室内定位领域具有良好的前景。UWB技术是一种传输速率高(最高可达1000Mbps以上),发射功率较低,穿透能力较强并且是基于极窄脉冲的无线技术,无载波。正是这些优点,使它在室内定位领域得到了较为精确的结果。

射频识别技术

射频定位技术实现起来非常方便,而且系统受环境的干扰较小,电子标签信息可以编辑改写比较灵活。

NOKOV室内定位技术,主要用于实时准确测量,记录物体在真实三维空间中的运动轨迹或姿态。其光学式动作捕捉系统利用多个高速相机,从不同角度监视和跟踪待捕捉目标上的标志点,根据计算机视觉原理,可以从多个高速摄像机的连续图像序列里,确定某个点在空间中的位置和运动轨迹,获取得到的实时刚体位姿数据通过SDK发送到无人机地面站,地面站输出控制命令进一步控制无人机的运动。考虑到不同的实际情况,动作捕捉工作站也可以将实时刚体位姿数据通过SDK,发送到无人机的控制芯片,利用无人机进行解算数据,实现自主协同控制。

NOKOV室内定位系统

例如:在同济大学建筑与城市规划学院开发的无人机集群自主建造系统中,就使用了NOKOV动作捕捉系统。建造系统整体由无人机空间位姿反馈和地面站轨迹规划控制两部分组成,系统定位需求分为两个部分:位姿控制和全局定位控制。尽管NOKOV动作捕捉系统可以对室内刚体进行姿态的解算,且解算精度比机载惯性测量单元好,但由于系统内置的惯性测量单元足以支撑刚体的姿态估计,所以在位姿控制部分,使用的是无人机控制领域常用的解决方案,即利用机载的姿态传感器、磁力计、气压计和空速计等传感器系统综合处理无人机实时的局部姿态信息。系统的全局定位控制采用了基于光学红外相机的NOKOV动作捕捉系统,代替室外常用的GPS定位系统对无人机的实时位置进行跟踪,以满足室内无人机稳定悬停的作业要求,同时将无人机坐标信息传回地面站计算机的可视化界面。

用刚体的功能关系没问题,因为有一个关键的地方,就是烟筒和地面之间的作用力不做功

用刚体的转动定律也没问题, 因为烟筒围绕着底部转动,烟筒和地面之间的作用力产生的力矩为零

用质心运动定理,首先要受力分析烟筒受到地面的支持力N,重力G ,那么方程应该是 G-N=ma(矢量式),地面对烟筒的支持力无法知道,所以不能用质心运动定理来求解

你的错误在于没有考虑地面对烟筒的支持力,

这一讲的主题是d性体模拟中的d性力学基础,首先来看一个问题,就是当一个球跟多个球同时发生碰撞,如下图所示(称之为Bernoulli Problem):

或者当第一个球跟第二个球碰撞的瞬间,第二个球同时与第三个球碰撞,如下图所示(称之为Newton's Cradle):

这些问题的求解都可以归结为线性互补问题Linear Complementary Problem(简称LCP)的求解,线性互补问题的定义可以参考 物理引擎之约束求解(一)——线性互补问题 。假设有两个刚体(分别标注为1号跟2号),由于每个刚体都有六个自由度(translation+rotation),那么这两个刚体的位置就可以用下述公式来表示:

其中

同样 也有对应的变量表达,而由于刚体是不可穿插形变的,因此q还会有一些额外的约束:

这里的i指的是第i个碰撞点, 可以表示快要碰撞时候两个物体在第i个碰撞点处的signed distance。

如果用上一讲中的impulse-based方法来解方程,那么就意味着我们需要在碰撞的瞬间为两者施加一个冲量,而要想产生冲量,也就意味着两者产生了穿插,前面的条件将不再满足,即:

而如果我们希望在下一个timestep回复到正确的状态,那么上面这个函数的导数就需要是为正的:

这个表达式的物理意义是,等式后面表达式中的前面部分 表达的是碰撞点处的表面的法线(signed distance的梯度就是signed distance下降最快的方向,即表面法线方向),后面部分是刚体的速度,两者相乘大于等于0表示的是这两个向量的夹角小于九十度,也就是说在这个速度下,会使得两者的signed distance不断变大。

在impulse的作用下,速度会从 变成 ,即速度从碰撞变成背离。在Houdini中有个叫做restitution coefficient(恢复系数)的参数 ,这个参数是做什么的呢?用一个例子来说明,一个球在重力的作用下下坠,碰到地表,如果这个参数为0,那么这个小球在碰撞后,就会贴在地表上,如果是1的话,碰撞之后就会回d到起始的高度,也就是说,这个参数表达的是经过碰撞之后能量的残留比例。

将恢复系数跟表面法线结合起来看,我们可以得到如下公式(这个条件我们称之为一号条件):

如下图所示:

入射方向为 ,出射方向为 , 可以简单看成是是出射方向的速度的长度与入射方向的速度长度的比例, 是法线方向,那么上面这个公式自然就是成立的,毕竟能量是守恒的,出射速度的长度不可能超过入射速度的长度。

上面这个公式是针对单个碰撞点(contact point)而言的,当我们有多个碰撞点的时候, 就变成了一个矩阵,这个矩阵我们称之为 (这个矩阵的物理含义为,将刚体的速度映射到碰撞点上的沿着法线方向的速度?不是特别理解,如果单个碰撞点的情况,对应的是碰撞点的法线,那么这里就对应的是多个碰撞点法线组成的矩阵,既然是多个碰撞点,也就没有一个整体的法线概念了),这里的转置后面会解释。

另外,这里还有另外一个公式:

这个公式中 表示的是刚体的质量, 是一个矩阵,这个矩阵就是上面梯度向量组成的矩阵的转置(推导这里就不说了,抛开多个碰撞的情况不说,单个碰撞点的情况下,冲量的作用方向肯定是垂直于碰撞表面的,也就是说经过冲量作用后的加速度应该也是与碰撞表面的法线方向保持一致的,从主观上来说,这个结果是可以理解的), 则是前面说的碰撞时的冲量impulse,如果有多个碰撞点的话,这个变量也就是一个向量(几个碰撞点就是几维的)。矩阵 跟冲量的乘法得到的是一个力,而作用力除以质量就得到了加速度,通过这个加速度(在时间的作用下)就能完成速度的一个变化。

这个公式中,冲量(每个分量)必须要大于等于0(当刚体碰撞时的速度在表面法线方向上的速度非0,且速度法线方向的分量与法线方向相反,那么就取>0,否则就取等于0),否则在碰撞后,刚体就直接装进另一个刚体中,从而发生穿插,这个条件我们称之为二号条件:

一号条件跟二号条件组成linear complementary condition(即如果 (对应的是碰撞点碰撞之后没有施加冲量,也就是说碰撞时候的速度与表面法线正好垂直,这种情况下,表面法线与速度正交,一号条件不等式前面的结果就是0)的时候,就不需要考虑一号条件;而如果 就必须要考虑一号条件,我们将这种情况称之为互补),最终我们需要求解的问题就可以表示为,在一二号条件:

约束下,求解:

即LCP,这个问题如果我们能够求解出冲量向量,那么我们就能得到需要的解,但是在多个碰撞点的情况下,这个会比较复杂。

Bullet物理引擎用的是一种叫做Gauss Siedal Method,一个个碰撞点去考虑,比如先考虑一号碰撞点的impulse是多少,之后再看一号impulse对二号碰撞点的速度的改变,之后再看二号碰撞点的impulse为多少并加上一号碰撞点的影响,同时算出对三号碰撞点的影响,以此类推,直到最后一个碰撞点对一号碰撞点的影响,不断迭代,经历多轮迭代最终达到一个平衡,这种方法是串行计算,对GPU不友好,性能较差。

另一种方法则是将LCP(这是一种timestep的方法)转换成一个优化问题,这种思想是物理模拟中的一种十分重要的思想,在很多问题的求解上都有应用。

先来说说拉格朗日乘子( lagrange multiplier ),这是数学上的一种优化策略中的术语,这个优化策略用以在给定的一些等式约束下,求得某个函数的局部极值(极大极小值),这个算法的基本思想可以叙述为,对于一个需要求解极小值(极大值可以转换为极小值)的函数f(x),已知需要满足g(x) = 0条件(或者说,已知极值是在g(x) = 0条件下满足),那么拉格朗日函数可以表示为:

我们知道,如果不考虑条件函数g(x) = 0的话,f(x)的极值可以直接通过 来求得,而在加上条件之后,问题就会变得复杂一点,上面的拉格朗日函数是自变量x跟 (这个就叫拉格朗日乘子)的函数,而原函数f(x)的极点则肯定会出现在拉格朗日函数的saddle point(极点)上,所以只需要对拉格朗日函数求偏导,并令各个偏导结果为0进行求解,就能得到取得极值的坐标点。

而如果对上面的情况进行泛化处理,比如将条件从等式变成不等式,那么我们就需要使用 KKT(Karush Kuhn Tucker) 条件方法,同样的,KKT会将原始的函数f(x),与等式约束 以及不等式约束 写到一个式子里:

f(x)取得极值的条件为:

联合这些等式,就能得到最终的极值点的坐标。这里值得一提的是,上面第三个条件中,由于h(x)是小于等于0的,因此要想条件成立,要么h(x) = 0,要么 ,也就是说,这个条件可以拆成两个条件:

且这两个条件是complementary(互补)的,如果移除g(x)的干扰,这个条件就跟前面LCP问题的求解的形式完全一致了,也就是说,LCP的求解就变成了KKT(优化问题)的求解,而这种问题的求解方法就十分丰富了,这里就不做展开,否则可以直接讲一个学期。

但是我们发现,用LCP来求解Bernoulli Problem可以得到正确的结果,但是用来求解Newton Cradle问题的时候结果却是错误的,这是因为理论上LCP问题的求解是不唯一的,也就是说我们得到的解有多个,其中选取的那个可能并不是正确的解。

这里需要注意的是,上面的求解是没有考虑碰撞时的摩擦力的,实际上如果添加了摩擦力的话,问题会变得更为复杂。但是有意思的是,即使加上摩擦力,依然可以表达为LCP问题(不过更为复杂),转化成的优化问题,其限制条件将会变成二次函数,因此其求解也会变得更为复杂。

最后做个总结,在目前情况下的物理引擎,对刚体碰撞的模拟依然是存在较大的精度问题,比如说大多数都没有办法解决上面的Bernoulli跟Newton Cradle问题,即使是不考虑摩擦力的情况,目前都没有物理引擎能给出完善的解决方案,更何况是更为精确的考虑摩擦力的情况。

Continuum Mechanics中描述了形变的相关理论,包括d性形变与塑性形变,我们这里着重考察d性形变。

最简单的d性形变就是前面说的d簧+质点的粒子系统,当质点不断移动从而压缩d簧的话,d簧就会不断的积累势能,当手松开之后,势能可能就会转换为动能,此时d簧产生的力叫做conservative force。

但是d性形变不只是局限于d簧系统,普通的物件也会发生此类形变,但是这里有亮点需要明确:

可以知道,d性体的形变是一个连续的变化,即形变前相邻的点在形变后依然是相邻的。我们可以利用微分思想来对这个连续的规律进行考虑,假设形变前物体上某一点X(处在material space)经过形变后变成了点x(处在deformed space),那么形变就可以表示成如下的公式:

对这个映射关系采用泰勒展开:

由于 是一个三维的变量(三维空间中的点),因此上面公式中的偏微分项 就是一个3x3的矩阵,这个矩阵我们叫做deformation gradient(形变梯度矩阵),通常用F来表示。

从这个公式我们可知道,这个矩阵的第一列进行乘法运算时对应的是 的第一个元素,换句话说,第一列就是在material space中沿着x方向移动一个距离时,在deformed space中就需要沿着某个方向移动一个相同大小的距离,这个方向就用第一列向量来表示,同理,其他两列就分别对应y/z方向上移动时对应的deformed space中的移动方向。

接下来我们看看要如何用数学公式表示物体的d性形变长度,假设在material space中某个点移动的位移为 ,那么移动的长度的平方就可以表示为 ,而在deformed space中对应点的移动位移就可以用 来表示,其长度则为 ,那么具体的形变量就可以用后者开平方后减去前者的开平方,不过这里为了避免因为开平方导致的高额计算消耗,可以先直接用平方之差来表示形变的测度:

上面等式中最后的 称之为Green(格林) Strain(形变) Tensor(本质上是个矩阵),这个矩阵可以用来描述微分意义下物体形变的规律,可对于推导或者计算出这个 的点X而言,在其周边较小的一块区域(微分算子)里的所有点都可以通过这个矩阵来计算其形变量,但是,如果超出这个区域范围, 可能会不同,也就是说, 准确来说是物件上某点的一个函数,可以写成

接下来,就是如何将前面的 变成势能,势能可以表示为如下形式的函数:

我们知道,这个函数有如下的性质:

根据上面两个性质,我们可以推断,这个函数可以大致用下图来表示:

至少是一个两阶以上的模型,应用泰勒展开,可以得到:

而由于 跟 都是0,那么上面公式就变成了:

由于 是个矩阵,那么这个公式就可以改写成如下的形式,这个公式我们称之为constitution model:

到目前为止,所有的公式都是通过数学推导给出的,没有掺杂物理相关的概念与理论,接下来,为了能够得到上面的公式的具体形式,就需要给出系数 ,而物理学中针对这个系数提出了众多的模型,甚至还有人考虑通过神经网络训练得到这个系数,这就造成了不同的势能物理模型。

要知道这个公式是如何在物理中进行应用的,我们就放到下一讲中进行介绍了。

蓝牙定位:蓝牙定位基于RSSI(Received Signal Strength Indication,信号场强指示)定位原理。蓝牙室内技术是利用在室内安装的若干个蓝牙局域网接入点,把网络维持成基于多用户的基础网络连接模式,并保证蓝牙局域网接入点始终是这个微微网的主设备,然后通过测量信号强度获得用户的位置信息。根据定位端的不同,蓝牙定位方式分为网络侧定位和终端侧定位。

UWB定位:超宽带(UWB)定位技术是一种全新的、与传统通信定位技术有极大差异的新技术。它利用事先布置好的已知位置的锚节点和桥节点,与新加入的盲节点进行通讯,并利用TDOA定位算法,通过测量出不同基站与移动终端的传输时延差来进行定位。

蓝牙定位与UWB定位对比:

首先是工程师最为关注的定位精度问题:目前蓝牙室内定位方案能够实现米级的定位精度;UWB定位已经能够实现厘米级高精度定位。

定位硬件:顾名思义,蓝牙室内定位方案的实现必然是建立在蓝牙室内定位产品的基础上,主要定位硬件包括蓝牙网关、蓝牙Beacon、手环、手表等蓝牙标签以及智能手机、无线局域网及后端数据服务器等。UWB定位硬件产品主要包括定位引擎服务器、智能终端、POE交换机、UWB基站、UWB标签、UWB模块、软件接口等。

应用领域:蓝牙定位主要应用于对人、物定位精度要求一般的室内定位,用于在一定空间范围内获取人或物的大致位置信息;UWB定位则主要应用于室内高精度定位,用于在一定空间范围内获取人或物的精确位置信息。

定位环境搭建:蓝牙定位布局相对简单,只要注意间隔范围就可以了,UWB定位布局相比蓝牙定位要复杂一些,因为涉及到UWB基站的安装。

最后,小编将SKYLAB室内定位工程师总结的各个领域室内定位解决方案选择要点告诉大家:室内定位从用途方向可以划分消费类和工业类。消费类主要实现室内人员引导、消费推送、安全监控、智能家居等商业应用。工业类主要实现消防安全、人员监控、设备引导、财产安全、智能工厂等应用。有些是侧重于单纯的室内定位,而有些则更侧重于导航功能、历史轨迹、电子围栏等功能,因此需要有针对性选择方案。单纯的室内定位、导航,对定位精度要求不高,可以优先选择蓝牙定位方案,侧重历史轨迹、电子围栏这些功能则可以优先考虑UWB定位方案;希望能够帮助到各位有室内定位方案需求的客户们。

UWB定位主要应用于室内高精度定位,用于在一定空间范围内获取人或物的位置信息,同时应用于各个领域的室内精确定位和导航,能够满足隧道、监狱、化工、工厂、煤矿、工地、电厂、养老、展馆、整车、机房、机场等高精度室内定位需求。

UWB室内定位方案应用领域

工业/汽车:实时追踪资产和库存,改进流程,提高搜索效率,减少资源浪费;

物流仓储:跟踪条码阅读器和叉车,减少保险检查的环节,使仓储管理变得灵活;

军事:人员定位和设备追踪,例如城市作战训练、d药仓库管理、高级研发;

医疗保健:实时跟踪病人,进行照顾和管理,利于病情分析和治疗改进,方便于人力资源管理;

危险环境:定位个人和资源,安全位置紧急搜索,人员监控,优化管理过程,做到安全有效;

重点安保区域:人员的进出管理、实时位置查询、禁区监管、隔离距离控制、人员调度,能对人员的位、行进路线、距离、速度进行监控和统计;

体育:实时跟踪与计算运动员的方向和速度等,详细的性能分析,记录队伍的比赛实况,视频集成。

以上就是关于室内定位技术都有哪些全部的内容,包括:室内定位技术都有哪些、室内定位系统具体有哪些功能、通过研究刚体的定轴转动可以得到什么结论等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/web/9325528.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-27
下一篇 2023-04-27

发表评论

登录后才能评论

评论列表(0条)

保存