svd文件怎么生成

svd文件怎么生成,第1张

SVD文件是一种特殊的文件格式,它可以用来存储矩阵数据。它的格式是由三个矩阵组成的:U,S和V。U和V是正交矩阵,S是对角矩阵。
要生成SVD文件,首先需要准备一个矩阵,然后使用SVD分解算法将其分解为U,S和V三个矩阵。最后,将这三个矩阵存储到一个文件中,就可以生成一个SVD文件了。

真实的训练数据总是存在各种各样的问题:

在许多领域的研究与应用中,通常需要对含有多个变量的数据进行观测,收集大量数据后进行分析寻找规律。多变量大数据集无疑会为研究和应用提供丰富的信息,但是也在一定程度上增加了数据采集的工作量。更重要的是在很多情形下,许多变量之间可能存在相关性,从而增加了问题分析的复杂性。如果分别对每个指标进行分析,分析往往是孤立的,不能完全利用数据中的信息,因此盲目减少指标会损失很多有用的信息,从而产生错误的结论。

因此需要找到一种合理的方法,在减少需要分析的指标同时,尽量减少原指标包含信息的损失,以达到对所收集数据进行全面分析的目的。由于各变量之间存在一定的相关关系,因此可以考虑将关系紧密的变量变成尽可能少的新变量,使这些新变量是两两不相关的,那么就可以用较少的综合指标分别代表存在于各个变量中的各类信息。主成分分析与因子分析就属于这类降维算法。

降维就是一种对高维度特征数据预处理方法。降维是将高维度的数据保留下最重要的一些特征,去除噪声和不重要的特征,从而实现提升数据处理速度的目的。在实际的生产和应用中,降维在一定的信息损失范围内,可以为我们节省大量的时间和成本。降维也成为应用非常广泛的数据预处理方法。

降维具有如下一些优点:

降维的算法有很多,比如奇异值分解(SVD)、主成分分析(PCA)、因子分析(FA)、独立成分分析(ICA)。

PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法。PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征。PCA的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,新的坐标轴的选择与数据本身是密切相关的。其中,第一个新坐标轴选择是原始数据中方差最大的方向,第二个新坐标轴选取是与第一个坐标轴正交的平面中使得方差最大的,第三个轴是与第1,2个轴正交的平面中方差最大的。依次类推,可以得到n个这样的坐标轴。通过这种方式获得的新的坐标轴,我们发现,大部分方差都包含在前面k个坐标轴中,后面的坐标轴所含的方差几乎为0。于是,我们可以忽略余下的坐标轴,只保留前面k个含有绝大部分方差的坐标轴。事实上,这相当于只保留包含绝大部分方差的维度特征,而忽略包含方差几乎为0的特征维度,实现对数据特征的降维处理。

旋转变换:

主成分分析:

为什么要最大方差:

样本均值:

样本方差:

样本X和样本Y的协方差:

例子:

正在网上各种学习,把学到的分散的内容暂时总结在此处。可能有些错误,会在发现后改正。
摘自: >

奇异值分解SVD的理解与应用

为更好的理解这篇文章,现在这里列出几个文中出现的概念,想要更深的理解这些概念,可以看我的另一篇文章:关于特征值的理解。

向量的内积:两向量a=[a1,a2,…,an]和b=[b1,b2,…,bn],其内积为 ab=a1b1+a2b2+……+anbn。

特征值与特征向量:对一个m×m矩阵A和向量x,如果存在λ使得下式成立,Ax=λx,则称λ为矩阵A的特征值,x称为矩阵的特征向量。

对角矩阵:对角矩阵是除对角线外所有元素都为零的方阵。

正交矩阵:正交是一个方块矩阵V,行与列皆为正交的单位向量,即Vn×nVTn×n=In,使得该矩阵的转置矩阵为其逆矩阵,VT=V1。

直接进入正题,矩阵当中有一个非常著名的理论,即:

一个n×n的对称矩阵A可以分解为:A=VDVT。其中,V是一个n×n正交矩阵,并且列向量是矩阵A的特征向量;D是一个n×n对角矩阵,并且对角线上的值为对应特征向量的特征值。

上面的理论是针对一个n×n的对称矩阵,那么对于任意的一个m×n的矩阵A,有没有类似的表达方法呢。答案是肯定的,svd正是用来解决这个问题的。

对任意一个m×n的矩阵A,可以将其分解为:A=USVT。其中U是一个m×m的正交矩阵;S是一个m×n的矩阵,其主对角元素≥0,非主对角元素均为0;V是一个n×n的正交矩阵。

关于svd的证明过程,似乎更多是数值上的工作,本文想给出更多intuitive上的理解。想要了解证明的可以参考这篇论文:Kalman D A singularly valuable decomposition: the SVD of a matrix。

这样,对任意一个矩阵,我都可以分解成三个矩阵的内积。让我们看一下它有什么神奇的性质。

AAT=USVTVSTUT=USSTUT=UDUT(1)
由于V是一个正交矩阵,VT=V1,所以VT*V=I。S只有主对角元素不为0,那么SST的结果为一个m×m的对角矩阵D。而虽然A是任意的一个m×n的矩阵,但AAT是一个m×m的对称矩阵。这样一看,AAT=UDUT是不是和前面那个理论非常相似。那么U的列向量应该是对称矩阵AAT的特征向量,D应该是一个对角矩阵,且对角线上值是对称矩阵AAT的特征值。ATA=VSTUTUSVT=VSTSVT=VWVT(2)
同样,V的列向量则是对称矩阵ATA的特征向量,而W则是一个n×n的对角矩阵。这里W和D实际上是相同的,只是对角线上后面的0的数量不一样。

可以看出,矩阵S主对角线上的值,实际上是对称矩阵AAT或ATA特征值的平方根。

所以,实际上svd是一个矩阵分解方法,对于任意一个m×n的矩阵A,svd都可以将其分解成为A=USVT。其中矩阵U的列向量是对称矩阵AAT的特征向量,称作左奇异矩阵;矩阵V的的列向量是对称矩阵ATA的特征向量;S是一个m×n的矩阵,主对角线上的值是对称矩阵AAT或ATA特征值的平方根,称作奇异值,且非对角线上的值为0

不知道写到这里,大家是不是对svd有了一个比较具体的印象。然而,上面只是从数学上解释了svd的构成,我们好奇的是,从很多地方,我们都听到了svd,即使如上面所述,它长的是这个样子,但是我们它到底可以用来做什么事情呢?

下面我们举几个svd的实际应用,加深我们对它的理解。

1)有损的数据压缩
假设我们有一个m×n的矩阵A,它表示一组数据


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/yw/10523575.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-09
下一篇 2023-05-09

发表评论

登录后才能评论

评论列表(0条)

保存