光纤是如何传输信号的呢?看完你就懂了!

光纤是如何传输信号的呢?看完你就懂了!,第1张

现在互联网产业日益增长,人们对于互联网的需求量越来越大,对网速带宽的要求也越来越高。拿以前的网速对比现在的网速,我们可以发现网速的速度几乎翻倍的增长,由以前的1M、2M到现在的50M、100M,还有现在的光纤宽带,那么现在的光纤是如何传输信号的呢?下面就让我们来看看吧
光纤通信的原理其实不复杂,它就是在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。
光通讯就是由发光二极管LED或注入型激光二极管ILD发出光信号沿光媒体传播,在另一端则有PIN或APD光电二极管作为检波器接收信号。对光载波的调制为移幅键控法,又称亮度调制(Intensity ModulaTIon)。典型的做法是在给定的频率下,以光的出现和消失来表示两个二进制数字。发光二极管LED和注入型激光二极管ILD的信号都可以用这种方法调制,PIN和ILD检波器直接响应亮度调制。

光纤通信是利用光波在光导纤维中传输信息的通信方式。由于激光具有高方向性、高相干性、高单色性等显著优点,光纤通信中的光波主要是激光,所以又叫做激光-光纤通信。

功率放大:将光放大器置于光发送端之前,以提高入纤的光功率。使整个线路系统的光功率得到提高。在线中继放大:建筑群较大或楼间距离较远时,可起中继放大作用,提高光功率。前置放大:在接收端的光电检测器之后将微信号进行放大,以提高接收能力。
光缆不易分支,因为传输的是光信号,所以一般用于点到点的连接。光的总线拓扑结构的实验性多点系统已经建成,但是价格还太贵。原则上,由光纤功率损失小、衰减少,有较大的带宽潜力,因此,一般光纤能够支持的接头数比双绞线或同轴电缆多得多。低价可靠的发送器为085um波长发光二极管LED,能支持100Mbps的传输率和15~2KM范围内的局域网。激光二极管的发送器成本较高,且不能满足百万小时寿命的要求。运行在085um波长的发光二极管检波器PIN也是低价的接收器。
光纤的应用方面也十分的广泛,大到企业服务器的链接,小到家庭住户的上网,它都能涉及到,现在网络已经进入了千家万户,可以说是融入了我们的生活,未来还有更快更便捷的5G网络,值得我们去期待。

工作原理:光纤是以SiO2为基质材料拉成的玻璃实体纤维,其导光原理是利用光的全反射原理,即当光以大于临界角的角度由折射率大的光密介质入射到折射率小的光疏介质时,将发生全反射,入射光全部反射到折射率大的光密介质,折射率小的光疏介质内将没有光透过。
普通裸光纤一般由中心高折射率玻璃芯、中间低折射率硅玻璃包层和最外部的加强树脂涂层组成。光纤按传播光波模式可分为单模光纤和多模光纤。
单模光纤的芯径较小,只能传播一种模式的光,其模间色散较小。多模光纤的芯径较粗,可传播多种模式的光,但其模间色散较大。按折射率分布的情况化分,可分为阶跃折射率(SI)光纤和渐变折射率(GI)光纤。
以稀土掺杂光纤激光器为例,掺有稀土离子的光纤芯作为增益介质,掺杂光纤固定在两个反射镜间构成谐振腔,泵浦光从M1入射到光纤中,从M2输出激光。
当泵浦光通过光纤时,光纤中的稀土离子吸收泵浦光,其电子被激励到较高的激发能级上,实现了离子数反转。反转后的粒子以辐射形成从高能级转移到 基态,输出激光。

要了解光纤线缆是如何工作的,请想像有一根无限长的饮水麦管或柔软的塑料管。例如,想像有一根数公里长的管道。现在,假设管道的内壁覆盖了一层全反射镜。然后,假设您从管道的一端往里看。在数公里远的另一端,您的一位朋友打开手电筒向管道内照射。因为管道内壁是全反射镜,所以手电筒发出的光将在管道内壁上反复反射(即使管道可能扭曲),结果,您将在另一端看到光。如果您的朋友以莫尔斯电码编码方式打开和关闭手电筒,他就可以通过该管道与您通信。这就是光纤线缆的基本原理。
用内部覆盖反射镜的管道制作线缆是可以的,但是这根线缆会非常粗大,并且用全反射镜覆盖管道内壁也很困难。因此,真正的光纤线缆是用玻璃制成的。玻璃极其纯净,即使其长度达数公里长,光仍然可以透射(请想像玻璃是如此透明,以至于数公里厚的窗户看起来仍然很清澈)。人们将玻璃抽成极细的玻璃丝,其厚度与人的头发相仿。然后,在玻璃丝外面包上两层塑料。
通过用塑料包裹玻璃丝,相当于在玻璃丝周围形成了反射镜。这一反射镜产生全内反射,就像管道内部覆盖的全反射镜一样。您可以在黑暗的房间内,利用手电筒和窗户来体验这种反射。如果您用手电筒以90度的角度向窗户照射,光线将直接透过玻璃。但是,如果您以非常小的角度(几乎与玻璃平行)照射,玻璃就将如同反射镜,您会看到光束从窗户反射出来并照射在屋内的墙壁上。光纤内传输的光线正是以这种极小的角度反射,从而完全保持在光纤内部。
为了通过光纤线缆发送电话交谈语音,人们将模拟语音信号转换为数字信号(有关详细信息,请参见模拟录音和数字录音工作原理)。位于管道一端的激光器交替打开和关闭,从而发送每位数据。采用单激光器的现代光纤系统每秒可传输数十亿位数据——激光每秒可打开和关闭数十亿次。最新的系统使用多台具有不同颜色的激光器在同一条光纤中传输多个信号。
现代光纤线缆可以将信号传输很远的距离——可能达到100公里。在长途线路上,每60至100公里就有一个设备箱。箱内的设备拾取信号并将其完好无损地转发到下一段光纤。

光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而 达成的光传导工具。光纤实际是指由透明材料做成的纤芯和在它周围采用比纤芯的折射率稍低的材料做成的包层,并将射入纤芯的光信号,经包层界面反射,使光信号在纤芯中传播前进的媒体。一般是由纤芯、包层和涂敷层构成的多层介质结构的对称圆柱体。光纤有两项主要特性:即损耗和色散。光纤每单位长度的损耗或者衰减(dB/km),关系到光纤通信系统传输距离的长短和中继站间隔的距离的选择。光纤的色散反应时延畸变或脉冲展宽,对于数字信号传输尤为重要。每单位长度的脉冲展宽,影响到一定传输距离和信息传输容量。光纤通信是利用光波在光导纤维中传输信息的通信方式。由于激光具有高方向性、高相干性、高单色性等显著优点,光纤通信中的光波主要是激光,所以又叫做激光-光纤通信。光纤通信是现代通信网的主要传输手段,它的发展历史只有一二十年,已经历三代:短波长多模光纤、长波长多模光纤和长波长单模光纤。采用光纤通信是通信史上的重大变革,美、日、英、法等20多个国家已宣布不再建设电缆通信线路,而致力于发展光纤通信。中国光纤通信已进入实用阶段。光纤通信的原理是:在发送端首先要把传送的信息(如话音)变成电信号,然后调制到激光器发出的激光束上,使光的强度随电信号的幅度(频率)变化而变化,并通过光纤发送出去;在接收端,检测器收到光信号后把它变换成电信号,经解调后恢复原信息。

发光元件有两种:LED灯,和激光发射器
其中,LED灯发出的是可见光,一般都可以看到,为红色。
至于怎么让光进入纤芯,这个很简单嘛。。。并不是所有发光元件发出的光都有进入光纤传输到另一端的。。。
你想想,你拿个手电照一个小孔,是不是会有小部分光透过小孔了。。。
对光纤传输来说,有一点点光过去就够了~~
其实,上面说法只是便于你理解,真正的设备还是做得很精密的。。。发光元件和纤芯对的很准的~~~

通讯用光纤由外覆塑料保护层的细如毛发的玻璃丝组成。玻璃丝实质上由两部分组成:核心直径为9到625μm,外覆直径为125μm的低折射率的玻璃材料。 虽然按所用的材料及不同的尺寸而分还有一些其它种类的光纤,但这里提到的是最常见的那几种。光在光纤的芯层部分以“全内反射”方式进行传输,也就是指光线 进入光纤的一端后,在芯层和包层界面之间来回反射,进而传输到光纤另一端。芯径为625μm,包层外径为125μm的光纤称为625/125μm 光纤。
(拓展)多模和单模光纤的区别?
多模:可以传播数百到上千个模式的光纤,称为多模(MM)光纤。根据折射率在纤芯和包层的径向分布情况,又可分为阶跃多模光纤和渐变多模光纤。几乎所有的多模光纤尺寸均为50/125μm或625/125μm,并且带宽(光纤的信息传输量)通常为200MHz到2GHz。多模光端机通过多模光纤可进行长达5公里的传输。以发光二极管或激光器为光源。
单模:只能传播一个模式的光纤称为单模光纤。标准单模(SM)光纤折射率分布和阶跃型光纤相似,只是纤芯直径比多模光纤小得多。单模光纤的尺寸为9-10/125μm,并且较之多模光纤具有无限量带宽和更低损耗的特性。而单模光端机多用于长距离传输,有时可达到150至200公里。采用LD或光谱线较窄的LED作为光源。
区别与联系:单模设备通常既可在单模光纤上运行,亦可在多模光纤上运行,而多模设备只限于在多模光纤上运行。
推荐厂家选择:F-tone Networks/北亿纤通,华为技术,中兴通讯,华三通信,思科这几家不错,质量都很好。其中F-tone Networks/北亿纤通性价比很好,是光模块出货量比较多之一。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/yw/10612100.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-10
下一篇 2023-05-10

发表评论

登录后才能评论

评论列表(0条)

保存