Fast算法原理:fastica算法步骤详解

Fast算法原理:fastica算法步骤详解,第1张

1. Fast算法原理

我们前面已经介绍过几个特征检测器,它们的效果都很好,特别是SIFT和SURF算法,但是从实时处理的角度来看,效率还是太低了。为了解决这个问题,Edward Rosten和Tom Drummond在2006年提出了FAST算法,并在2010年对其进行了修正。

FAST (全称Features from accelerated segment test)是一种用于角点检测的算法,该算法的原理是取图像中检测点,以该点为圆心的周围邻域内像素点判断检测点是否为角点,通俗的讲就是若一个像素周围有一定数量的像素与该点像素值不同,则认为其为角点。

1. 1 FAST算法的基本流程

在图像中选取一个像素点 p,来判断它是不是关键点。$$I_p$$等于像素点 p的灰度值。

以r为半径画圆,覆盖p点周围的M个像素,通常情狂下,设置 r=3,则 M=16,如下图所示:

设置一个阈值t,如果在这 16 个像素点中存在 n 个连续像素点的灰度值都高于$$I_p + t$$,或者低于$$I_p - t$$,那么像素点 p 就被认为是一个角点。如上图中的虚线所示,n 一般取值为 12。

由于在检测特征点时是需要对图像中所有的像素点进行检测,然而图像中的绝大多数点都不是特征点,如果对每个像素点都进行上述的检测过程,那显然会浪费许多时间,因此采用一种进行非特征点判别的方法:首先对候选点的周围每个 90 度的点:1,9,5,13 进行测试(先测试 1 和 19, 如果它们符合阈值要求再测试 5 和 13)。如果 p 是角点,那么这四个点中至少有 3 个要符合阈值要求,否则直接剔除。对保留下来的点再继续进行测试(是否有 12 的点符合阈值要求)。

虽然这个检测器的效率很高,但它有以下几条缺点:

·获得的候选点比较多

·特征点的选取不是最优的,因为它的效果取决与要解决的问题和角点的分布情况。

·进行非特征点判别时大量的点被丢弃

·检测到的很多特征点都是相邻的

前 3 个问题可以通过机器学习的方法解决,最后一个问题可以使用非最大值抑制的方法解决。

1. 2 机器学习的角点检测器

选择一组训练图片(最好是跟最后应用相关的图片)

使用 FAST 算法找出每幅图像的特征点,对图像中的每一个特征点,将其周围的 16 个像素存储构成一个向量P。

每一个特征点的 16 像素点都属于下列三类中的一种

根据这些像素点的分类,特征向量 P 也被分为 3 个子集:Pd ,Ps ,Pb,

定义一个新的布尔变量$$K_p$$,如果 p 是角点就设置为 Ture,如果不是就设置为 False。

利用特征值向量p,目标值是$K_p$,训练ID3 树(决策树分类器)。

将构建好的决策树运用于其他图像的快速的检测。

1. 3 非极大值抑制

在筛选出来的候选角点中有很多是紧挨在一起的,需要通过非极大值抑制来消除这种影响。

为所有的候选角点都确定一个打分函数$$V $$ , $$V $$的值可这样计算:先分别计算$$I_p$$与圆上16个点的像素值差值,取绝对值,再将这16个绝对值相加,就得到了$$V $$的值

最后比较毗邻候选角点的 V 值,把V值较小的候选角点pass掉。

FAST算法的思想与我们对角点的直观认识非常接近,化繁为简。FAST算法比其它角点的检测算法快,但是在噪声较高时不够稳定,这需要设置合适的阈值。

2.Fast实现

OpenCV中的FAST检测算法是用传统方法实现的,

1.实例化fast

参数:

·threshold:阈值t,有默认值10

·nonmaxSuppression:是否进行非极大值抑制,默认值True

返回:

Fast:创建的FastFeatureDetector对象

2.利用fast.detect检测关键点,没有对应的关键点描述

参数:

gray: 进行关键点检测的图像,注意是灰度图像

返回:

kp: 关键点信息,包括位置,尺度,方向信息

3.将关键点检测结果绘制在图像上,与在sift中是一样的

示例:

结果:

% function [Ahat2, shat, n_iteration Test] = nc_fastica_svd(xold,typeStr,N,A)

function [shat Ahat2] = nc_fastica_svd(xold,typeStr,N)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%

% non-circular complex FastICA算法,基于Newton迭代法,类似与fastICA

% ************************input***************************

% xold:混合信号,m*n,m为阵元数,n为快拍数

% typeStr: 非线性函数,'log', 'kurt', or 'sqrt'

% **************************output**************************

% Ahat:解混矩阵

% shat: 估计的源信号

% ********************************************************

% Reference

% Mike Novey and T. Adali, "On Extending the complex FastICA algorithm

% to noncircular sources" in

% (To appear 2007/2008) IEEE Journel on Signal Processing.,

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

type = 0

if strcmp(typeStr,'log') == 1

type = 1

elseif strcmp(typeStr,'kurt') == 1

type = 2

elseif strcmp(typeStr,'sqrt') == 1

type = 3

end

tol = 1e-5

a2 = 0.1

defl = 1% components are estimated one by one in a deflationary mannerset this to 0 if you want them all estimated simultaneously

maxcounter = 50

[n,m] = size(xold)

% Whitening of s:

yyy = zeros(1,m)

[Ex, Dx] = svd(cov(xold'))

E = Ex(:,1:N)

D = Dx(1:N,1:N)

Q = mtimes(sqrt(inv(D)),E')

x = Q * xold

%Pseudo-covariance

pC = (x*transpose(x))/m

% FIXED POINT ALGORITHM

W = eye(N)

Wold = zeros(N)

k = 0

while (norm(abs(Wold'*W)-eye(N),'fro')>(N*1e-12) &&k <15*N)

k = k+1

Wold = W

for kk=1:N %Loop thru sources

yy = W(:,kk)'*x

absy =abs(yy).^2

%%Fixed point

if type == 1 %%log

g = 1./(a2 + absy)

gp = -1./(a2 + absy).^2

elseif type == 2 %Kurt

g = absy

gp = ones(size(absy))

elseif type == 3 %sqrt

g = 1./(2*sqrt(a2 + absy))

gp = -1./(4*(a2 + absy).^(3/2))

end

gRad = mean(ones(N,1)*(g.*conj(yy)).*x,2)

ggg = mean(gp.*absy + g)

B = mean(gp .* conj(yy).^2)*pC

W(:,kk) = Wold(:,kk)*(ggg) -(gRad) + (B*conj(Wold(:,kk)))

end

%Orthonormalization

[E,D] = eig(W'*W)

W = W * E * inv(sqrt(D)) * E'

end%Loop thru sources

n_iteration = k

shat = W'*x%Estimated sources

% Ahat1 = inv(Q)*W

Ahat2 = W'*Q

这个是NC-fastica,可以用。稍微注释了些

原始程序,不知道是谁写的了

您好, 这样的:

一、FastICA算法的基本步骤:

1. 对观测数据进行中心化,使它的均值为0;

2. 对数据进行白化,。

3. 选择需要估计的分量的个数,设迭代次数

4. 选择一个初始权矢量(随机的)。

5. 令,非线性函数的选取见前文。

6. 。

7. 令。

8. 假如不收敛的话,返回第5步。

9.令,如果,返回第4步。

二.MATLAB源程序及说明:

%下程序为ICA的调用函数,输入为观察的信号,输出为解混后的信号

function Z=ICA(X)

%-----------去均值---------

[M,T] = size(X)%获取输入矩阵的行/列数,行数为观测数据的数目,列数为采样点数

average= mean(X')' %均值

for i=1:M

X(i,:)=X(i,:)-average(i)*ones(1,T)

end

%---------白化/球化------

Cx = cov(X',1) %计算协方差矩阵Cx

[eigvector,eigvalue] = eig(Cx)%计算Cx的特征值和特征向量

W=eigvalue^(-1/2)*eigvector' %白化矩阵

Z=W*X %正交矩阵

%----------迭代-------

Maxcount=10000 %最大迭代次数

Critical=0.00001 %判断是否收敛

m=M %需要估计的分量的个数

W=rand(m)

for n=1:m

WP=W(:,n) %初始权矢量(任意)

% Y=WP'*Z

% G=Y.^3%G为非线性函数,可取y^3等

% GG=3*Y.^2 %G的导数

count=0

LastWP=zeros(m,1)

W(:,n)=W(:,n)/norm(W(:,n))

while abs(WP-LastWP)&abs(WP+LastWP)>Critical

count=count+1 %迭代次数

LastWP=WP %上次迭代的值

% WP=1/T*Z*((LastWP'*Z).^3)'-3*LastWP

for i=1:m

WP(i)=mean(Z(i,:).*(tanh((LastWP)'*Z)))-(mean(1-(tanh((LastWP))'*Z).^2)).*LastWP(i)

end

WPP=zeros(m,1)

for j=1:n-1

WPP=WPP+(WP'*W(:,j))*W(:,j)

end

WP=WP-WPP

WP=WP/(norm(WP))

if count==Maxcount

fprintf('未找到相应的信号)

return

end

end

W(:,n)=WP

end

Z=W'*Z

%以下为主程序,主要为原始信号的产生,观察信号和解混信号的作图

clear allclc

N=200n=1:N%N为采样点数

s1=2*sin(0.02*pi*n)%正弦信号

t=1:Ns2=2*square(100*t,50)%方波信号

a=linspace(1,-1,25)s3=2*[a,a,a,a,a,a,a,a]%锯齿信号

s4=rand(1,N)%随机噪声

S=[s1s2s3s4]%信号组成4*N

A=rand(4,4)

X=A*S%观察信号

%源信号波形图

figure(1)subplot(4,1,1)plot(s1)axis([0 N -5,5])title('源信号')

subplot(4,1,2)plot(s2)axis([0 N -5,5])

subplot(4,1,3)plot(s3)axis([0 N -5,5])

subplot(4,1,4)plot(s4)xlabel('Time/ms')

%观察信号(混合信号)波形图

figure(2)subplot(4,1,1)plot(X(1,:))title('观察信号(混合信号)')

subplot(4,1,2)plot(X(2,:))

subplot(4,1,3)plot(X(3,:))subplot(4,1,4)plot(X(4,:))

Z=ICA(X)

figure(3)subplot(4,1,1)plot(Z(1,:))title('解混后的信号')

subplot(4,1,2)plot(Z(2,:))

subplot(4,1,3)plot(Z(3,:))

subplot(4,1,4)plot(Z(4,:))xlabel('Time/ms')


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/yw/11539638.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-16
下一篇 2023-05-16

发表评论

登录后才能评论

评论列表(0条)

保存