设计一个简单的人工神经网络识别 matlab源程序

设计一个简单的人工神经网络识别 matlab源程序,第1张

神经网络的是我的毕业论文的一部分

4.人工神经网络

人的思维有逻辑性和直观性两种不同的基本方式。逻辑性的思维是指根据逻辑规则进行推理的过程;它先将信息化成概念,并用符号表示,然后,根据符号运算按串行模式进行逻辑推理。这一过程可以写成串行的指令,让计算机执行。然而,直观性的思维是将分布式存储的信息综合起来,结果是忽然间产生想法或解决问题的办法。这种思维方式的根本之点在于以下两点:1.信息是通过神经元上的兴奋模式分布在网络上2.信息处理是通过神经元之间同时相互作用的动态过程来完成的。

人工神经网络就是模拟人思维的第二种方式。这是一个非线性动力学系统,其特色在于信息的分布式存储和并行协同处理。虽然单个神经元的结构极其简单,功能有限,但大量神经元构成的网络系统所能实现的行为却是极其丰富多彩的。

4.1人工神经网络学习的原理

人工神经网络首先要以一定的学习准则进行学习,然后才能工作。现以人工神经网络对手写“A”、“B”两个字母的识别为例进行说明,规定当“A”输入网络时,应该输出“1”,而当输入为“B”时,输出为“0”。

所以网络学习答帆前的准则应该是:如果网络做出错误的判决,则通过网络的学习,应使得网络减少下次犯同样错误的可能性。首先,给网络的各连接权值赋予(0,1)区间内的随机值,将“A”所对应的图像模式输入给网络,网络将输入模式加权求和、与门限比较、再进行非线性运算,得到网络的输出。在此情况下,网络输出为“1”和“0”的概率各为50%,也就是说是完全随机的。这时如果输出为“1”(结果正确),则使连接权值增大,以便使网络再次遇到“A”模式输入时,仍然能做出正确的判断。

如果输出为“0”(即结果错误),则把网络连接权值朝着减小综合输入加权值的方向调整,其目的在于使网络下次再遇到“A”模式输入时,减小犯同样错误的可能性。如此 *** 作调整,当给网络轮番输入若干个手写字母“A”、“B”后,经过网络按以上学习方法进行若干次学习后,网络判断的正确率将大大提高。这说明网络对这两个模式的学习已经获得了成功,它已将这两个模式分布地记忆在网络的各个连接权值上。当网络再次遇到其中任何一个模式时,能够做出迅速、准确的判断和识别。一般说来,网络中所含的神经元个数越多,则它能记忆、识别的模式也就越多。

4.2人工神经网络的优缺点

人工神经网络轿族由于模拟了大脑神经元的组织方式而具有了人脑功能的一些基本特征,为人工智能的研究开辟了新的途径,神经网络具有的优点在于:

(1)并行分布性处理

因为人工神经网络中的神经元排列并不是杂乱无章的,往往是分层或以一种有规律的序列排列,信号可以同时到达一批神经元的输入端,这种结构非常适合并行计算。同时如果将每一个神经元看作是一个小的处理单元,则整个系统可以是一个分布式计算系统,这样就避免了以往的“匹配冲突”,“组合爆炸”和“无穷递归”等题,推理速度快。

(2)可学习性

一个相对很小的人工神经网络可存储大量的专家知识,并且能根据学习算法,或者利用样本指导系统来模拟现实环境(称为有教师学习),或者对输入进行自适应学习(称为无教师学习),不断地自动学习,完善知识的存储。

(3)鲁棒性和容错性

由于采用大量的神经元及其相互连接,具有联想记忆与联想映射能力清清,可以增强专家系统的容错能力,人工神经网络中少量的神经元发生失效或错误,不会对系统整体功能带来严重的影响。而且克服了传统专家系统中存在的“知识窄台阶”问题。

(4)泛化能力

人工神经网络是一类大规模的非线形系统,这就提供了系统自组织和协同的潜力。它能充分逼近复杂的非线形关系。当输入发生较小变化,其输出能够与原输入产生的输出保持相当小的差距。

(5)具有统一的内部知识表示形式,任何知识规则都可以通过对范例的学习存储于同一个神经网络的各连接权值中,便于知识库的组织管理,通用性强。

虽然人工神经网络有很多优点,但基于其固有的内在机理,人工神经网络也不可避免的存在自己的弱点:

(1)最严重的问题是没能力来解释自己的推理过程和推理依据。

(2)神经网络不能向用户提出必要的询问,而且当数据不充分的时候,神经网络就无法进行工作。

(3)神经网络把一切问题的特征都变为数字,把一切推理都变为数值计算,其结果势必是丢失信息。

(4)神经网络的理论和学习算法还有待于进一步完善和提高。

4.3神经网络的发展趋势及在柴油机故障诊断中的可行性

神经网络为现代复杂大系统的状态监测和故障诊断提供了全新的理论方法和技术实现手段。神经网络专家系统是一类新的知识表达体系,与传统专家系统的高层逻辑模型不同,它是一种低层数值模型,信息处理是通过大量的简单处理元件(结点) 之间的相互作用而进行的。由于它的分布式信息保持方式,为专家系统知识的获取与表达以及推理提供了全新的方式。它将逻辑推理与数值运算相结合,利用神经网络的学习功能、联想记忆功能、分布式并行信息处理功能,解决诊断系统中的不确定性知识表示、获取和并行推理等问题。通过对经验样本的学习,将专家知识以权值和阈值的形式存储在网络中,并且利用网络的信息保持性来完成不精确诊断推理,较好地模拟了专家凭经验、直觉而不是复杂的计算的推理过程。

但是,该技术是一个多学科知识交叉应用的领域,是一个不十分成熟的学科。一方面,装备的故障相当复杂另一方面,人工神经网络本身尚有诸多不足之处:

(1)受限于脑科学的已有研究成果。由于生理实验的困难性,目前对于人脑思维与记忆机制的认识还很肤浅。

(2)尚未建立起完整成熟的理论体系。目前已提出了众多的人工神经网络模型,归纳起来,这些模型一般都是一个由结点及其互连构成的有向拓扑网,结点间互连强度所构成的矩阵,可通过某种学习策略建立起来。但仅这一共性,不足以构成一个完整的体系。这些学习策略大多是各行其是而无法统一于一个完整的框架之中。

(3)带有浓厚的策略色彩。这是在没有统一的基础理论支持下,为解决某些应用,而诱发出的自然结果。

(4)与传统计算技术的接口不成熟。人工神经网络技术决不能全面替代传统计算技术,而只能在某些方面与之互补,从而需要进一步解决与传统计算技术的接口问题,才能获得自身的发展。

虽然人工神经网络目前存在诸多不足,但是神经网络和传统专家系统相结合的智能故障诊断技术仍将是以后研究与应用的热点。它最大限度地发挥两者的优势。神经网络擅长数值计算,适合进行浅层次的经验推理专家系统的特点是符号推理,适合进行深层次的逻辑推理。智能系统以并行工作方式运行,既扩大了状态监测和故障诊断的范围,又可满足状态监测和故障诊断的实时性要求。既强调符号推理,又注重数值计算,因此能适应当前故障诊断系统的基本特征和发展趋势。随着人工神经网络的不断发展与完善,它将在智能故障诊断中得到广泛的应用。

根据神经网络上述的各类优缺点,目前有将神经网络与传统的专家系统结合起来的研究倾向,建造所谓的神经网络专家系统。理论分析与使用实践表明,神经网络专家系统较好地结合了两者的优点而得到更广泛的研究和应用。

离心式制冷压缩机的构造和工作原理与离心式鼓风机极为相似。但它的工作原理与活塞式压缩机有根本的区别,它不是利用汽缸容积减小的方式来提高汽体的压力,而是依靠动能的变化来提高汽体压力。离心式压缩机具有带叶片的工作轮,当工作轮转动时,叶片就带动汽体运动或者使汽体得到动能,然后使部分动能转化为压力能从而提高汽体的压力。这种压缩机由于它工作时不断地将制冷剂蒸汽吸入,又不断地沿半径方向被甩出去,所以称这种型式的压缩机为离心式压缩机。其中根据压缩机中安装的工作轮数量的多少,分为单级式和多级式。如果只有一个工作轮,就称为单级离心式压缩机,如果是由几个工作轮串联而组成,就称为多级离心式压缩机。在空调中,由于压力增高较少,所以一般都是采用单级,其它方面所用的离心式制冷压缩机大都是多级的。单级离心式制冷压缩机的构造主要由工作轮、扩压器和蜗壳等所组成。 压缩机工作时制冷剂蒸汽由吸汽口轴向进入吸汽室,并在吸汽室的导流作用引导由蒸发器(或中间冷却器)来的制冷剂蒸汽均匀地进入高速旋转的工作轮3(工作轮也称叶轮,它是离心式制冷压缩机的重要部件,因为只有通过工作轮才能将能量传给汽体)。汽体在叶片作用下,一边跟着工作轮作高速旋转,一边由于受离心力的作用,在叶片槽道中作扩压流动,从而使汽体的压力和速度都得到提高。由工作轮出来的汽体再进入截面积逐渐扩大的扩压器4(因为汽体从工作轮流出时具有较高的流速,扩压器便把动能部分地转化为压力能,从而提高汽体的压力)。汽体流过扩压器时速度减小,而压力则进一步提高。经扩压器后汽体汇集到蜗壳中,再经排气口引导至中间冷却器或冷凝器中。

二、离心式制冷压缩机的特点与特性

离心式制冷压缩机与活塞式制冷压缩机相比较,具有下列优点:

(1)单机制冷量大,在制冷量相同时它的体积小,占地面积少,重量较活塞式轻5~8倍。

(2)由于它没有汽阀活塞环等易损部件,又没有曲柄连杆机构,因而工作可靠、运转平稳、噪音小、 *** 作简单、维护费用低。

(3)工作轮和机壳之间没有摩擦,无需润滑。故制冷剂蒸汽与润滑油不接触,从而提高了蒸发器和冷凝器的传热性能。

(4)能经济方便的调节制冷量且调节的范围较大。

(5)对制冷剂的适应性差,一台结构一定的离心式制冷压缩机只能适应一种制冷剂。

(6)由于适宜采用分子量比较大的制冷剂,故只适用于大制冷量,一般都在25~30万大卡/时以上。如制冷量太少,则要求流量小,流道窄,从而使流动阻力大,效率低。但近年来经过不断改进,用于空调的离心式制冷压缩机,单机制冷量可以小到10万大卡/时左右。

制冷与冷凝温度、蒸发温度的关系。

由物理学可知,回转体的动量矩的变化等于外力矩,则

T=m(C2UR2-C1UR1)

两边都乘以角速度ω,得

Tω=m(C2UωR2-C1UωR1)

也就是说主轴上的外加功率N为:

N=m(U2C2U-U1C1U)

上式两边同除以m则得叶轮给予单位质量制冷剂蒸汽的功即叶轮的理论能量头。 U2 C2

ω2 C2U R1 R2 ω1 C1 U1 C2r β 离心式制冷压缩机的特性是指理论能量头与流量之间变化关系,也可以表示成制冷

W=U2C2U-U1C1U≈U2C2U

(因为进口C1U≈0)

又C2U=U2-C2rctgβ C2r=Vυ1/(A2υ2)

故有

W= U22(1-

Vυ1

ctgβ)

A2υ2U2

式中:V—叶轮吸入蒸汽的容积流量(m3/s)

υ1υ2 ——分别为叶轮入口和出口处的蒸汽比容(m3/kg)

A2、U2—叶轮外缘出口面积(m2)与圆周速度(m/s)

β—叶片安装角

由上式可见,理论能量头W与压缩机结构、转速、冷凝温度、蒸发温度及叶轮吸入蒸汽容积流量有关。对于结构一定、转速一定的压缩机来说,U2、A2、β皆为常量,则理论能量头W仅与流量V、蒸发温度、冷凝温度有关。

按照离心式制冷压缩机的特性,宜采用分子量比较大的制冷剂,目前离心式制冷机所用的制冷剂有F—11、F—12、F—22、F—113和F—114等。我国目前在空调用离心式压缩机中应用得最广泛的是F—11和F—12,且通常是在蒸发温度不太低和大制冷量的情况下,选用离心式制冷压缩机。此外,在石油化学工业中离心式的制冷压缩机则采用丙烯、乙烯作为制冷剂,只有制冷量特别大的离心式压缩机才用氨作为制冷剂。

三、离心式制冷压缩机的调节

离心式制冷压缩机和其它制冷设备共同构成一个能量供给与消耗的统一系统。制冷机组在运行时,只有当通过压缩机的制冷剂的流量与通过设备的流量相等时,以及压缩机所产生的能量头与制冷设备的阻力相适应时,制冷系统的工况才能保持稳定。但是制冷机的负荷总是随外界条件与用户对冷量的使用情况而变化的,因此为了适应用户对冷负荷变化的需要和安全经济运行,就需要根据外界的变化对制冷机组进行调节,离心式制冷机组制冷量的调节有:1°改变压缩机的转速;2°采用可转动的进口导叶;3°改变冷凝器的进水量;4°进汽节流等几种方式,其中最常用的是转动进口导叶调节和进汽节流两种调节方法。所谓转动进口导叶调节,就是转动压缩机进口处的导流叶片以使进入到叶轮去的汽体产生旋绕,从而使工作轮加给汽体的动能发生变化来调节制冷量。所谓进汽节流调节,就是在压缩机前的进汽管道上安装一个调节阀,如要改变压缩机的工况时,就调节阀门的大小,通过节流使压缩机进口的压力降低,从而实现调节制冷量。离心式压缩机制冷量的调节最经济有效的方法就是改变进口导叶角度,以改变蒸汽进入叶轮的速度方向(C1U)和流量V。但流量V必须控制在稳定工作范围内,以免效率下降。

在公式(18)中,和分别表示状态变量与其修正量组成的列向量;为方阵,一般叫作雅可比矩阵,第i行j列元素为 ,它的大小为第i个函数对第j个变量求偏导;k则表示阵元素都在处取;同时,F(X)是由n个函数组成的n维列向量;在极坐标下,节点电压可如下表示:

在这里插入图片描述

(19)芹扮宏

若和为已知大小的功率,与从节点电压求得的有功和无功功率之差,为功率的不平衡量,则节点功率不平衡量可用如下公式计算:

在这里插入图片描述

(20)

节点功率可用各节点电压模值与相位表示,如下公式所示:

在这里插入图片描述

(21)

式(21)中,为节点i和j的相位差。

由以公式(18)-(21)推得牛顿法下,其潮流计算方嫌册程可写为:

在这里插入图片描述

(22)

公式(22)中,雅可比矩阵的各元素为

在这里插入图片描述

(23)

(24)

(25)

(26)

在这里插入图片描述

(27)

(28)

(29)

(30)

其中,节点导纳矩阵的元素由Gij 、Bij表示。

随着国内外配电系统自动化水平不缺罩断提高,电力行业人员也开始更加深入地研究配电网系统。配电网潮流计算作为DMS(配电管理系统)的重要基础,受到广大行业界人士的关注。因此,配电网潮流计算,已然成为配电网分析的重要内容。配电网与输电网相比,两者有明显不同,前者一般采用网格结构,线路参数R/X的值较大,三相负荷不对称程度明显。这些特点使得在输电网中计算有效,如牛顿法,不再适用于配电网。为此,有学者提出了适用于配电网的潮流算法,主要包括基于回路方程的潮流算法、前推回推法和改进的牛顿-拉夫逊法[17](简称改进的牛拉法)。其中,基于回路方程的方法具有较强的网格处理能力和良好的收敛性,但该方法的节点数和分支数处理非常复杂。前推回推法是针对配电网的树状特性,可以避免潮流计算中的病态条件,同时速度更快。然而,由于其公式和算法与牛顿潮流算法不同,其在其它方面(如潮流优化)的应用将受到限制。

改进牛顿法通过对传统法进行一定的近似,将J阵写成UDUT 的形式。U仅由网络拓扑决定,是一个上三角矩阵;D是一个对角矩阵。在牛拉法中,需要对J阵因子分解与前代回代,改进法则只有前推回代的计算过程。它很好地改善了传统法以及前推回推法。经过算例计算结果证明,改进法可以避免J阵病态,且拥有前推回代法的收敛速度、精度,又由于它属于牛顿型算法,所以该算法已经得到了广泛的运用[18]。

下面附带电力系统分析牛顿法算例及matlab程序:

网络结构如下:系统结构图

系统参数如下:

在上图所示的简单电力系统中,系统中节点1、2为PQ节点,节点3为PV节点,节点4为平衡节点,已给定P1s+jQ1s=-0.30-j0.18 P2s+jQ2s=-0.55-j0.13 P3s=0.5 V3s=1.10 V4s=1.05∠0°

容许误差ε=10-5

节点导纳矩阵:

导纳矩阵

各节点电压:

节点 e f v ζ

1.0.984637 -0.008596 0.984675 -0.500172

2.0.958690 -0.108387 0.964798 -6.450306

3.1.092415 0.128955 1.100000 6.732347

4.1.050000 0.000000 1.050000 0.000000

各节点功率:

节点 P Q

1-0.300000 -0.180000

2–0.550000 -0.130000

3 0.500000 -0.551305

4 0.367883 0.264698

matlab程序如下:

// 牛顿法潮流计算matlab程序

clc

Y=[1.042093-8.242876i -0.588235+2.352941i 3.666667i -0.453858+1.891074i

-0.588235+2.352941i 1.069005-4.727377i 0-0.480769+2.403846i

3.666667i 0 -3.333333i0

-0.453858+1.891074i -0.480769+2.403846i 00.934627-4.261590i]

%导纳矩阵

e=[1 1 1.1 1.05]%初始电压

f=zeros(4,1)

V=zeros(4,1)%节点电压

Ws=[-0.3 -0.18 -0.55 -0.13 0.5 1.1]%初始功率

W=zeros(6,1)

n=length(Y)%节点数

J=zeros(2*(n-1))%雅可比矩阵

delta_v=zeros(1,6)

delta_w=Ws

G=real(Y)

B=imag(Y)

S=zeros(4,2)

c=0%循环次数

m=input('请输入PQ节点数:')

while max(abs(delta_w))>10^-5

for i=1:(n-1)%以下为求取雅可比矩阵

for j=1:(n-1)

if (i~=j)

J(2*i-1,2*j-1)=-(G(i,j)*e(i)+B(i,j)*f(i))

J(2*i,2*j)=-J(2*i-1,2*j-1)

J(2*i-1,2*j)=B(i,j)*e(i)-G(i,j)*f(i)

J(2*i,2*j-1)=J(2*i-1,2*j)

end

end

end

for j=1:(n-2)

J(6,2*j-1)=0

J(6,2*j)=0

end%以上为非对角线元素

s1=0

s2=0

for i=1:(n-1)

for j=1:n

s1=s1+(G(i,j).*e(j)-B(i,j).*f(j))

s2=s2+(G(i,j).*f(j)+B(i,j).*e(j))

end

J(2*i-1,2*i-1)=-s1-G(i,i) *e(i)-B(i,i)*f(i)

J(2*i-1,2*i)=-s2+B(i,i) *e(i)-G(i,i)*f(i)

s1=0

s2=0

end

for i=1:m

for j=1:n

s1=s1+G(i,j).*f(j)+B(i,j).*e(j)

s2=s2+(G(i,j).*e(j)-B(i,j).*f(j))

end

J(2*i,2*i-1)=s1+B(i,i) *e(i)-G(i,i)*f(i)

J(2*i,2*i)=-s2+G(i,i) *e(i)+B(i,i)*f(i)

s1=0

s2=0

end

J(6,5)=-2*e(3)

J(6,6)=-2*f(3)%对角线元素求解

for i=1:m

for j=1:n

s1=s1+e(i)*(G(i,j).*e(j)-B(i,j).*f(j))+f(i)*(G(i,j).*f(j)+B(i,j).*e(j))

s2=s2+f(i)*(G(i,j).*e(j)-B(i,j).*f(j))-e(i)*(G(i,j).*f(j)+B(i,j).*e(j))

end

delta_w(2*i-1)=Ws(2*i-1)-s1

delta_w(2*i)=Ws(2*i)-s2

W(2*i-1)=s1

W(2*i)=s2

s1=0

s2=0

end

for j=1:n

s1=s1+e(3)*(G(3,j).*e(j)-B(3,j).*f(j))+f(3)*(G(3,j).*f(j)+B(3,j).*e(j))

end

delta_w(5)=Ws(5)-s1

delta_w(6)=(Ws(6)^2-(e(3)^2+f(3)^2))

W(5)=s1

W(6)=sqrt(e(3)^2+f(3)^2)%以上求功率差值

delta_v=-inv(J)*delta_w

for i=1:(n-1)

e(i)=e(i)+delta_v(2*i-1)

f(i)=f(i)+delta_v(2*i)

end%求电压差值

c=c+1

end

for x=1:4

V(x)=e(x)+f(x)*1i

end%节点电压

s1=0

for x=3:4

for j=1:4

s1=s1+conj(Y(x,j))*conj(V(j))

end

S(x,1)=real(V(x)*s1)

S(x,2)=imag(V(x)*s1)

s1=0

end%PV与平衡节点功率

for x=1:2

S(x,1)=W(2*x-1)

S(x,2)=W(2*x)

end%节点功率

c

J

V

S

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

运行结果如下:

潮流计算结果

文章知识点与官方知识档案匹配

算法技能树首页概览

34356 人正在系统学习中

电磁MATLAB

微信公众号

程序从vx公众号获取,助力科研!

打开CSDN APP,看更多技术内容

matlab潮流程序,潮流计算的MATLAB源程序_weixin_39760433的博客-CSDN...

1、简单潮流计算的牛顿拉夫逊程序,相关的原始数据数据数据输入格式如下:%B1是支路参数矩阵,第一列和第二列是节点编号。节点编号由小到大编写%对于含有变压器的支路,第一列为低压侧节点编号,第二列为高压侧节点%编号,将变压器的串联阻抗...

继续访问

...编程实现_某只旺仔的博客_电力系统潮流计算程序matlab

潮流计算是电力系统中最基本,应用最广泛的一种计算,是电力系统稳定计算和故障分析的基础。这个代码通过matlab实现了用极坐标表示的牛顿法和P-Q分解法进行潮流计算,使用IEEE14节点系统进行测试,计算结果和应用matpower的潮流计算完全一致。代码...

继续访问

<em>matlab</em>导数计算

<p>matlab导数计算,通过编程实战掌握具体应用。包括matlab导数计算前、matlab导数计算中、matlab导数计算后。</p>

继续访问

(完整版)基于MATLAB牛顿拉夫逊法进行潮流计算.doc

>%本程序的功能是用牛顿拉夫逊法进行潮流计算 n=input' 请输入节点数 :n=nl=input' 请输入支路数 :nl=isb=input' 请输入平衡母线节点号 :isb=pr=input' 请输入误差精度 :pr=B1=input' 请输入由各支路参数形成的矩阵 :B1=B2=input' 请输入各节点参数形成的矩阵 :B2=Y=zeros(ne=zeros

牛顿拉夫逊潮流计算matlab程序

基于牛顿拉夫逊进行潮流计算,求得各节点电压,各支路功率流动,内附程序输入说明以及案例。

珍藏多年的matlab潮流计算程序源代码集合,包含多个潮流计算程序

【达摩老生出品,必属精品,亲测校正,质量保证】 资源名:珍藏多年的matlab潮流计算程序源代码集合,包含多个潮流计算程序 资源类型:matlab项目全套源码 源码说明: 全部项目源码都是经过测试校正后百分百成功运行的,如果您下载后不能运行可联系我进行指导或者更换。 适合人群:新手及有一定经验的开发人员

牛顿-拉夫逊法潮流计算——采用极坐标形式

采用极坐标形式的Newton-Raphson法进行潮流计算,并提供IEEE 14、57节点及New England 39节点的计算数据。使用方法:运行/修改PowerFlow_Newton_Polar.m文件。

电力系统牛拉法潮流计算MATLAB程序

实现潮流计算的MATLAB代码,使用牛顿拉夫逊法,可更改结点数,支路数和导纳阵,通用性强

【课设/毕业设计】电力系统潮流计算(Matlab代码实现)

潮流计算是电力系统分析中的一种最基本的计算,对给定系统进行潮流计算可以得到各母线上的电压、网络中的功率分布及功率损耗等。本文介绍了潮流计算在电力系统分析中的作用及潮流计算的发展状况。通过对潮流计算所用的数学模型进行分析,建立潮流计算的基本方程。牛顿-拉夫逊法是目前广泛应用的一种潮流计算方法,本文阐述了牛顿-拉夫逊潮流计算的基本原理。详细展示了利用matlab平台编写潮流计算程序的具体过程,通过实例证明基于牛顿-拉夫逊法的潮流计算程序具有收敛速度快、占用内存小的优点。潮流计算的程序实现手段。

继续访问

传统牛顿拉夫逊法潮流计算matlab程序.zip

采用何仰赞《电力系统分析》中介绍的牛顿拉夫逊法matlab编程,程序还能实现N-1校核和线路网损分析,适合学习电气工程领域的学子。

基于matpower的电力系统潮流计算matlab程序

它是由美国康奈尔大学电力系统工程研究中心(PSERC of Cornell University)的RAY D. Zimmerman、Carlos E. Murillo-Sánchez和甘德强在Robert J. Thomas的指导下开发出来的,本章介绍的是MATPOWER4.0。每一个电网用变量名为“mpc”的结构体(structures)来定义,结构体mpc的不同字段用baseMVA、bus、branch、gen等来定义和返回电网的具体参数。列的数据类似于标准的IEEE 和PTI 列的数据格式。

继续访问

直流潮流计算matlab程序

直流潮流发的特点是用电力系统的交流潮流(有功功率和无功功率)等值的直流电流来代替。甚至只用直流电路的解析法来分析电力系统的有功潮流,而不考虑无功分布对有功的影响。这样一来计算速度加快,但计算的准确度有所降低,本方法适用于对潮流计算准确度要求不高的计算场景。θ为网络中各节点的电压相位角的向量;P为节点注入的有功功率向量​。这就相当于线路两端的直流电位分别为θi和θj。(2)按照标幺值计算时,节点电压与其额定电压相差不大,故有:Ui≈Uj≈1.0;以IEEE9节点系统为算例,系统参数如下​。

继续访问

牛顿-拉夫逊法潮流计算matlab程序,牛顿—拉夫逊法潮流计算MATLAB程序.doc

!!!!!!!!!!!!########################牛顿—拉夫逊法潮流计算程序By Yuluo%牛顿--拉夫逊法进行潮流计算n=input('请输入节点数:n=')n1=input('请输入支路数:n1=')isb=input('请输入平衡母线节点号:isb=')pr=input('请输入误差精度:pr=')B1=input('请输入由支路参数形成的矩阵:B1=')B...

继续访问

matlab程序 潮流计算,潮流计算matlab程序

《潮流计算matlab程序》由会员分享,可在线阅读,更多相关《潮流计算matlab程序(3页珍藏版)》请在人人文库网上搜索。1、clear%各节点参数:节点编号,类型,电压幅值,电压相位,注入有功,注入无功 %类型:1PQ节点,2PV节点,3平衡节点%本程序中将最后一个节点设为平衡节点R_1=1 1 1.0 0 0.2 0.2j2 1 1.0 0 -0.45 -0.15j3 1 1.0 0 ...

继续访问

matlab潮流计算函数,基于牛顿拉夫逊法潮流计算的matlab实验报告(含源程序和结果)...

《基于牛顿拉夫逊法潮流计算的matlab实验报告(含源程序和结果)》由会员分享,可在线阅读,更多相关《基于牛顿拉夫逊法潮流计算的matlab实验报告(含源程序和结果)(24页珍藏版)》请在人人文库网上搜索。1、基于牛顿拉夫逊法潮流计算的matlab实验报告一、 实验目的和要求1.学习掌握matlab的基本用法2.应用MATLAB语言编写具有一定通用性的牛顿-拉夫逊法潮流计算程序。要求:(1)潮流计...

继续访问

matlab的做潮流计算,Matlab实现潮流计算程序

关于Matlab趋势计算program.doc文件的实现,爱文共享的信息具有丰富的相关文档,每天都有成千上万的行业名人在该站点上共享最新信息.程序代码如下: 读取数据clcclearfilename ='txt'a = textread(filename)n = a(,)pinghengjd = a(,)phjddianya = a(,)jingdu = a(,)b = zeros (,)j = ...

继续访问

天然气潮流计算matlab程序

此外,由于天然气在管道内传输时会产生压力损耗,所以每隔一段都要设置压缩机来提升节点压力,保证天然气系统的正常运行。(3)如果节点中存在压缩机,则可以求得压缩机消耗的等效天然气流量,将其作为一个负荷加入到潮流计算中;管道或者节点的约束,例如流量、节点压力、压缩机消耗电能和压缩比等,如下面四式所示。(2)根据天然气节点压力与节点间流量的关系式求出前一个节点的节点压力;(1)由用户负荷求得微型燃气轮机的功率

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/yw/12440256.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-25
下一篇 2023-05-25

发表评论

登录后才能评论

评论列表(0条)

保存