怎么用泰勒展开式求极限?

怎么用泰勒展开式求极限?,第1张

令y=x^sinx……………………(1)

两边取对数得:

lny=sinxlnx

两边对x求导得:(1/y)y`=sinx/x+lnxcosx(2)

由(1)(2)得到y`=(sinx/x+lnxcosx)x^(sinx)

扩展资料

某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。

求极限基本方法有

1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;

2、无穷大根式减去无穷大根式时,分子有理化;

3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。

4、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。

令G(t)=F(x+tΔx,y+tΔy,z+tΔz),把G(t)展开成麦克劳林公式,然后取t=1,就得到结果了。

例如G(t)的一阶麦克劳林公式是:

G(t)=G(0)+G'(0)t(余项不写了),即

F(x+tΔx,y+tΔy,z+tΔz)

=F(x,y,z)+[Fx(x,y,z)Δx+Fy(x,y,z)Δy+Fz(x,y,z)Δz]t

取t=1,就得到

F(x+Δx,y+Δy,z+Δz)

=F(x,y,z)+[Fx(x,y,z)Δx+Fy(x,y,z)Δy+Fz(x,y,z)Δz]

这就是三元函数的一阶泰勒公式。

几何意义

三重积分就是四维空间的体积。

当积分函数为1时,就是其密度分布均匀且为1,三维空间质量值就等于其体积值。

当积分函数不为1时,说明密度分布不均匀。

以下列举一些常用函数的泰勒公式 :

扩展资料

数学中,泰勒公式是一个用函数在某点的信息描述其附近取值的公式。如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下,泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的邻域中的值。泰勒公式还给出了这个多项式和实际的函数值之间的偏差。

泰勒公式得名于英国数学家布鲁克·泰勒。他在1712年的一封信里首次叙述了这个公式,尽管1671年詹姆斯·格雷高里已经发现了它的特例。拉格朗日在1797年之前,最先提出了带有余项的现在形式的泰勒定理。

希腊哲学家芝诺在考虑利用无穷级数求和来得到有限结果的问题时,得出不可能的结论-芝诺悖论,这些悖论中最著名的两个是“阿喀琉斯追乌龟”和“飞矢不动”。

后来,亚里士多德对芝诺悖论在哲学上进行了反驳,直到德谟克利特以及后来的阿基米德进行研究,此部分数学内容才得到解决。阿基米德应用穷举法使得一个无穷级数能够被逐步的细分,得到了有限的结果。

14世纪,玛达瓦发现了一些特殊函数,包括正弦、余弦、正切、反正切等三角函数的泰勒级数。

17世纪,詹姆斯·格雷果里同样继续着这方面的研究,并且发表了若干麦克劳林级数。直到1712年,英国牛顿学派最优秀代表人物之一的数学家泰勒提出了一个通用的方法,这就是为人们所熟知的泰勒级数;爱丁堡大学的科林·麦克劳林教授发现了泰勒级数的特例,称为麦克劳林级数。

参考资料百度百科-泰勒公式

常用泰勒展开公式如下:

1、e^x = 1+x+x^2/2!+x^3/3!+……+x^n/n!+……

2、ln(1+x)=x-x^2/2+x^3/3-……+(-1)^(k-1)(x^k)/k(|x|<1)

3、sin x = x-x^3/3!+x^5/5!-……+(-1)^(k-1)(x^(2k-1))/(2k-1)!+……。(-∞<x<∞)

4、cos x = 1-x^2/2!+x^4/4!-……+(-1)k(x^(2k))/(2k)!+…… (-∞<x<∞)

5、arcsin x = x + 1/2x^3/3 + 13/(24)x^5/5 + ……(|x|<1)

6、arccos x = π - ( x + 1/2x^3/3 + 13/(24)x^5/5 + …… ) (|x|<1)

7、sinh x = x+x^3/3!+x^5/5!+……+(-1)^(k-1)(x^2k-1)/(2k-1)!+…… (-∞<x<∞)

tanx的泰勒展开式的求法是:tanx=x+x^3/3+(2 x^5)/15+(17 x^7)/315+(62x^9)/2835+O[x]^11(|x|<π/2)。


  泰勒公式是一个用函数在某点的信息描述其附近取值的公式,如果函数足够平滑的话,在已知函数在某一点的各阶导数值的情况之下。

泰勒公式可以用这些导数值做系数构建一个多项式来近似函数在这一点的领域中的值。

泰勒展开式的重要性体现在以下五个方面:

1、幂级数的求导和积分可以逐项进行,因此求和函数相对比较容易。

2、一个解析函数可被延伸为一个定义在复平面上的一个开片上的解析函数,并使得复分析这种手法可行。

3、泰勒级数可以用来近似计算函数的值,并估计误差。

4、证明不等式。

5、求待定式的极限。

泰勒展开式常用公式是f(x)=f(a)+f'(a)(x-a)+[f''(a)/2!](x-a)^2+……+[f(n)(a)/n!](a)(x-a)^n。

泰勒公式,是一个用函数在某点的信息描述其附近取值的公式。如果函数满足一定的条件,泰勒公式可以用函数在某一点的各阶导数值做系数构建一个多项式来近似表达这个函数。常用公式为f(x)=f(a)+f'(a)(x-a)+[f''(a)/2!](x-a)^2+……+[f(n)(a)/n!](a)(x-a)^n。

在高等数学的理论研究及应用实践中,泰勒公式有着十分重要的应用,简单归纳如下:

(1)应用泰勒中值定理(泰勒公式)可以证明中值等式或不等式命题。

(2)应用泰勒公式可以证明区间上的函数等式或不等式。

(3)应用泰勒公式可以进行更加精密的近似计算。

(4)应用泰勒公式可以求解一些极限。

(5)应用泰勒公式可以计算高阶导数的数值。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/yw/12812868.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-28
下一篇 2023-05-28

发表评论

登录后才能评论

评论列表(0条)

保存