土星模拟器SS如何使用?最好详细点说下,我试过都不会用

土星模拟器SS如何使用?最好详细点说下,我试过都不会用,第1张

如果是我说的游戏《守护英雄》,那就不是PS游戏而是SS(土星)游戏,得用SS模拟器。 土星模拟器以及游戏ROM下载地址(那个“SEGASSGUARDIAN_HEROES守护者列传mds”就是): 顺便说一句,《守护英雄》是我最喜欢的SS游戏,是由我非常欣赏的“财宝”工作组负责开发的,游戏非常不错,我买SS有一半是因为这个游戏。如果给你的网站下载不了的话,可以再找我,我有该游戏的光盘,我可以做成镜像以后传给你。 根据你描述的游戏特点来看,好像并不是PS上的游戏,更像是SS(土星)上的著名动作游戏《守护英雄》。《守护英雄》的男主角确实是金发使用大剑,而且游戏的方式类似于MD上《幽游白书 魔强统一战》,在3条战线来回切换作战。你看是不是下图这个游戏?如果是我说的游戏《守护英雄》,那就不是PS游戏而是SS(土星)游戏,得用SS模拟器。 土星模拟器以及游戏ROM下载地址(那个“SEGASSGUARDIAN_HEROES守护者列传mds”就是): 顺便说一句,《守护英雄》是我最喜欢的SS游戏,是由我非常欣赏的“财宝”工作组负责开发的,游戏非常不错,我买SS有一半是因为这个游戏。如果给你的网站下载不了的话,可以再找我,我有该游戏的光盘,我可以做成镜像以后传给你。 根据你描述的游戏特点来看,好像并不是PS上的游戏,更像是SS(土星)上的著名动作游戏《守护英雄》。《守护英雄》的男主角确实是金发使用大剑,而且游戏的方式类似于MD上《幽游白书 魔强统一战》,在3条战线来回切换作战。

想知道他们怎么用,就必须了解他们的用途,他们和其他寄存器如何合作,寄存器寻址和存储器寻址如何完成?单说这几个段寄存器,不涉及其他寄存器,是不能真正了解掌握他们的。学习需要循序渐进,“莫在浮沙筑高台”
---------------
寄存器是中央处理器内的组成部份。寄存器是有限存贮容量的高速存贮部件,它们可用来暂存指令、数据和位址。在中央处理器的控制部件中,包含的寄存器有指令寄存器(IR)和程序计数器(PC)。在中央处理器的算术及逻辑部件中,包含的寄存器有累加器(ACC)。
寄存器是内存阶层中的最顶端,也是系统获得 *** 作资料的最快速途径。寄存器通常都是以他们可以保存的位元数量来估量,举例来说,一个“8位元寄存器”或“32位元寄存器”。寄存器现在都以寄存器档案的方式来实作,但是他们也可能使用单独的正反器、高速的核心内存、薄膜内存以及在数种机器上的其他方式来实作出来。
寄存器通常都用来意指由一个指令之输出或输入可以直接索引到的暂存器群组。更适当的是称他们为“架构寄存器”。
例如,x86指令及定义八个32位元寄存器的集合,但一个实作x86指令集的CPU可以包含比八个更多的寄存器。
寄存器是CPU内部的元件,寄存器拥有非常高的读写速度,所以在寄存器之间的数据传送非常快。
[编辑本段]寄存器用途
1可将寄存器内的数据执行算术及逻辑运算;
2存于寄存器内的地址可用来指向内存的某个位置,即寻址;
3可以用来读写数据到电脑的周边设备。
[编辑本段]数据寄存器
8086有14个16位寄存器,这14个寄存器按其用途可分为(1)通用寄存器、(2)指令指针、(3)标志寄存器和(4)段寄存器等4类。
(1)通用寄存器有8个,又可以分成2组,一组是数据寄存器(4个),另一组是指针寄存器及变址寄存器(4个)
数据寄存器分为:
AH&AL=AX(accumulator):累加寄存器,常用于运算;在乘除等指令中指定用来存放 *** 作数,另外,所有的I/O指令都使用这一寄存器与外界设备传送数据
BH&BL=BX(base):基址寄存器,常用于地址索引;
CH&CL=CX(count):计数寄存器,常用于计数;常用于保存计算值,如在移位指令,循环(loop)和串处理指令中用作隐含的计数器
DH&DL=DX(data):数据寄存器,常用于数据传递。
他们的特点是,这4个16位的寄存器可以分为高8位:AH,BH,CH,DH以及低八位:AL,BL,CL,DL。这2组8位寄存器可以分别寻址,并单独使用。
另一组是指针寄存器和变址寄存器,包括:
SP(StackPointer):堆栈指针,与SS配合使用,可指向目前的堆栈位置;
BP(BasePointer):基址指针寄存器,可用作SS的一个相对基址位置;
SI(SourceIndex):源变址寄存器可用来存放相对于DS段之源变址指针;
DI(DestinationIndex):目的变址寄存器,可用来存放相对于ES段之目的变址指针。
这4个16位寄存器只能按16位进行存取 *** 作,主要用来形成 *** 作数的地址,用于堆栈 *** 作和变址运算中计算 *** 作数的有效地址。
(2)指令指针IP(InstructionPointer)
指令指针IP是一个16位专用寄存器,它指向当前需要取出的指令字节,当BIU从内存中取出一个指令字节后,IP就自动加1,指向下一个指令字节。注意,IP指向的是指令地址的段内地址偏移量,又称偏移地址(OffsetAddress)或有效地址(EA,EffectiveAddress)。
(3)标志寄存器FR(FlagRegister)
8086有一个18位的标志寄存器FR,在FR中有意义的有9位,其中6位是状态位,3位是控制位。
OF:溢出标志位OF用于反映有符号数加减运算所得结果是否溢出。如果运算结果超过当前运算位数所能表示的范围,则称为溢出,OF的值被置为1,否则,OF的值被清为0。
DF:方向标志DF位用来决定在串 *** 作指令执行时有关指针寄存器发生调整的方向。
IF:中断允许标志IF位用来决定CPU是否响应CPU外部的可屏蔽中断发出的中断请求。但不管该标志为何值,CPU都必须响应CPU外部的不可屏蔽中断所发出的中断请求,以及CPU内部产生的中断请求。具体规定如下:
(1)、当IF=1时,CPU可以响应CPU外部的可屏蔽中断发出的中断请求;
(2)、当IF=0时,CPU不响应CPU外部的可屏蔽中断发出的中断请求。
TF:跟踪标志TF。该标志可用于程序调试。TF标志没有专门的指令来设置或清楚。
(1)如果TF=1,则CPU处于单步执行指令的工作方式,此时每执行完一条指令,就显示CPU内各个寄存器的当前值及CPU将要执行的下一条指令。
(2)如果TF=0,则处于连续工作模式。
SF:符号标志SF用来反映运算结果的符号位,它与运算结果的最高位相同。在微机系统中,有符号数采用补码表示法,所以,SF也就反映运算结果的正负号。运算结果为正数时,SF的值为0,否则其值为1。
ZF:零标志ZF用来反映运算结果是否为0。如果运算结果为0,则其值为1,否则其值为0。在判断运算结果是否为0时,可使用此标志位。
AF:下列情况下,辅助进位标志AF的值被置为1,否则其值为0:
(1)、在字 *** 作时,发生低字节向高字节进位或借位时;
(2)、在字节 *** 作时,发生低4位向高4位进位或借位时。
PF:奇偶标志PF用于反映运算结果中“1”的个数的奇偶性。如果“1”的个数为偶数,则PF的值为1,否则其值为0。
CF:进位标志CF主要用来反映运算是否产生进位或借位。如果运算结果的最高位产生了一个进位或借位,那么,其值为1,否则其值为0。)
4)段寄存器(SegmentRegister)
为了运用所有的内存空间,8086设定了四个段寄存器,专门用来保存段地址:
CS(CodeSegment):代码段寄存器;
DS(DataSegment):数据段寄存器;
SS(StackSegment):堆栈段寄存器;
ES(ExtraSegment):附加段寄存器。
当一个程序要执行时,就要决定程序代码、数据和堆栈各要用到内存的哪些位置,通过设定段寄存器CS,DS,SS来指向这些起始位置。通常是将DS固定,而根据需要修改CS。所以,程序可以在可寻址空间小于64K的情况下被写成任意大小。所以,程序和其数据组合起来的大小,限制在DS所指的64K内,这就是COM文件不得大于64K的原因。8086以内存做为战场,用寄存器做为军事基地,以加速工作。
以上是8086寄存器的整体概况,自80386开始,PC进入32bit时代,其寻址方式,寄存器大小,功能等都发生了变化。
=============================以下是80386的寄存器的一些资料======================================
寄存器都是32-bits宽。
A、通用寄存器
下面介绍通用寄存器及其习惯用法。顾名思义,通用寄存器是那些你可以根据自己的意愿使用的寄存器,修改他们的值通常不会对计算机的运行造成很大的影响。通用寄存器最多的用途是计算。
EAX:通用寄存器。相对其他寄存器,在进行运算方面比较常用。在保护模式中,也可以作为内存偏移指针(此时,DS作为段寄存器或选择器)
EBX:通用寄存器。通常作为内存偏移指针使用(相对于EAX、ECX、EDX),DS是默认的段寄存器或选择器。在保护模式中,同样可以起这个作用。
ECX:通用寄存器。通常用于特定指令的计数。在保护模式中,也可以作为内存偏移指针(此时,DS作为寄存器或段选择器)。
EDX:通用寄存器。在某些运算中作为EAX的溢出寄存器(例如乘、除)。在保护模式中,也可以作为内存偏移指针(此时,DS作为段寄存器或选择器)。
同AX分为AH&AL一样,上述寄存器包括对应的16-bit分组和8-bit分组。
B、用作内存指针的特殊寄存器
ESI:通常在内存 *** 作指令中作为“源地址指针”使用。当然,ESI可以被装入任意的数值,但通常没有人把它当作通用寄存器来用。DS是默认段寄存器或选择器。
EDI:通常在内存 *** 作指令中作为“目的地址指针”使用。当然,EDI也可以被装入任意的数值,但通常没有人把它当作通用寄存器来用。DS是默认段寄存器或选择器。
EBP:这也是一个作为指针的寄存器。通常,它被高级语言编译器用以建造‘堆栈帧'来保存函数或过程的局部变量,不过,还是那句话,你可以在其中保存你希望的任何数据。SS是它的默认段寄存器或选择器。
注意,这三个寄存器没有对应的8-bit分组。换言之,你可以通过SI、DI、BP作为别名访问他们的低16位,却没有办法直接访问他们的低8位。
C、段选择器:
实模式下的段寄存器到保护模式下摇身一变就成了选择器。不同的是,实模式下的“段寄存器”是16-bit的,而保护模式下的选择器是32-bit的。
CS代码段,或代码选择器。同IP寄存器(稍后介绍)一同指向当前正在执行的那个地址。处理器执行时从这个寄存器指向的段(实模式)或内存(保护模式)中获取指令。除了跳转或其他分支指令之外,你无法修改这个寄存器的内容。
DS数据段,或数据选择器。这个寄存器的低16bit连同ESI一同指向的指令将要处理的内存。同时,所有的内存 *** 作指令默认情况下都用它指定 *** 作段(实模式)或内存(作为选择器,在保护模式。这个寄存器可以被装入任意数值,然而在这么做的时候需要小心一些。方法是,首先把数据送给AX,然后再把它从AX传送给DS(当然,也可以通过堆栈来做)
ES附加段,或附加选择器。这个寄存器的低16bit连同EDI一同指向的指令将要处理的内存。同样的,这个寄存器可以被装入任意数值,方法和DS类似。
FSF段或F选择器(推测F可能是Free)。可以用这个寄存器作为默认段寄存器或选择器的一个替代品。它可以被装入任何数值,方法和DS类似。
GSG段或G选择器(G的意义和F一样,没有在Intel的文档中解释)。它和FS几乎完全一样。
SS堆栈段或堆栈选择器。这个寄存器的低16bit连同ESP一同指向下一次堆栈 *** 作(push和pop)所要使用的堆栈地址。这个寄存器也可以被装入任意数值,你可以通过入栈和出栈 *** 作来给他赋值,不过由于堆栈对于很多 *** 作有很重要的意义,因此,不正确的修改有可能造成对堆栈的破坏。
注意一定不要在初学汇编的阶段把这些寄存器弄混。他们非常重要,而一旦你掌握了他们,你就可以对他们做任意的 *** 作了。段寄存器,或选择器,在没有指定的情况下都是使用默认的那个。这句话在现在看来可能有点稀里糊涂,不过你很快就会在后面知道如何去做。
指令指针寄存器:
EIP这个寄存器非常的重要。这是一个32位宽的寄存器,同CS一同指向即将执行的那条指令的地址。不能够直接修改这个寄存器的值,修改它的唯一方法是跳转或分支指令。(CS是默认的段或选择器)
上面是最基本的寄存器。下面是一些其他的寄存器,你甚至可能没有听说过它们。(都是32位宽):
CR0,CR2,CR3(控制寄存器)。举一个例子,CR0的作用是切换实模式和保护模式。
还有其他一些寄存器,D0,D1,D2,D3,D6和D7(调试寄存器)。他们可以作为调试器的硬件支持来设置条件断点。
TR3,TR4,TR5,TR6和TR寄存器(测试寄存器)用于某些条件测试。

游戏香肠派对的SS6赛季是天气之神的主题。天气之神是游戏香肠派对的ss6赛季游戏官方设立的主题。天气之神是掌管着天空,具有非凡的力量,享受着香肠先民的崇拜的神明。新赛季的角色为被称为天气之神,新赛季不仅是和天气相关,还有元素技能。

能不能详细点啊。
access数据库是mdb文件,如果你用access打开时不能编辑,那就检查一下这个文件是否设置为只读了。
而如果是在ASP中打开这个mdb文件进行数据库的读写,步聚如下:
一、创建AdodbConnection对象用来连接数据库
使用以下语句:Set Conn=ServerCreateObject("AdodbConnection")
打开数据库连接:ConnOpen "Provider=MicrosoftJetOLEDB40; Data Source="&servermappath("xxxmdb")
其中的xxxmdb就是你的access数据库名称(可以加上路径例如:/data/xxxmdb。
二、创建adodbrecordset记录集对象来打开数据表并获取记录集
使用以下语句:
set rs=servercreateobject("adodbrecordset")
rsopen "select from xxtable",conn,1,3
这样就打开了xxtable这个表,并返回了其中的所有记录,并且是以可编辑状态打开的。其中的conn即是你的数据库连接对象的名称,后面紧跟着的1是recordset记录集对象的游标类型,此处为1表示你通过此SQL语句获得的记录集的游标可以前后移动,这样你就可以进行记录集的循环等 *** 作。最后面的一个数字3,是记录集的锁定类型,3表示可编辑
关于游标类型及锁定类型可以百度搜索一下
通过上面两步,你已经获得了一些记录集并且处于可编辑这些记录集的状态了
接下来就可以使用rsaddnew,rsupdate进行记录的新增,更新 *** 作。
比如新增:
rsaddnew() '表示新增一条记录
rs("name")="test1"
rs("pass")="1234"
rsupdate()
这样就新增了一条记录,其中的rsaddnew()表示新增一条记录,紧接着用rs("name"),rs("pass")来写入数据到name,pass这两个字段中,然后使用rsupdate来保存一下你刚才的写入,这样一条新记录的插入就完成了。
而如果你只是修改一条已有的记录,则不需要rsaddnew(),后面的代码一样即可完成。不过修改记录一般是会先查询指定条件的某一条记录再进行rsupdae
当然你也可以不使用recordset记录集对象,而直接用sql语句的insert,update等来完成。
另外补充说明一点:
如果你发现用recordset或是sql的insert,update不能成功增加记录或修改记录,那么你就检查一下你的这个数据库连接代码是否连接成功(也就是数据库文件的路径是否写对)。如果这些都对,那么你再检查这个数据库文件是否是只读状态,如果也不是只读状态,那么就应该是文件权限的问题了。当你的MDB文件在NTFS格式的磁盘分区中时,需要设置文件的权限才可以写入数据,否则就只能读取。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/yw/13117362.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-06-02
下一篇 2023-06-02

发表评论

登录后才能评论

评论列表(0条)

保存