linux下怎么设置tcp

linux下怎么设置tcp,第1张

Socket的send函数在执行时报EAGAIN的错误当客户通过Socket提供的send函数发送大的数据包时,就可能返回一个EGGAIN的错误。该错误产生的原因是由于send 函数中的size变量大小超过了tcp_sendspace的值。tcp_sendspace定义了应用在调用send之前能够在kernel中缓存的数据量。当应用程序在socket中设置了O_NDELAY或者O_NONBLOCK属性后,如果发送缓存被占满,send就会返回EAGAIN的错误。 为了消除该错误,有三种方法可以选择: 1.调大tcp_sendspace,使之大于send中的size参数 ---no -p -o tcp_sendspace=65536 2.在调用send前,在setsockopt函数中为SNDBUF设置更大的值 3.使用write替代send,因为write没有设置O_NDELAY或者O_NONBLOCK1. tcp 收发缓冲区默认值 [root@qljt core]# cat /proc/sys/net/ipv4/tcp_rmem 409687380 416153687380 :tcp接收缓冲区的默认值[root@qljt core]# cat /proc/sys/net/ipv4/tcp_wmem 409616384 416153616384 : tcp 发送缓冲区的默认值2. tcp 或udp收发缓冲区最大值[root@qljt core]# cat /proc/sys/net/core/rmem_max 131071131071:tcp 或 udp 接收缓冲区最大可设置值的一半。也就是说调用 setsockopt(s, SOL_SOCKET, SO_RCVBUF, &rcv_size, &optlen) 时rcv_size 如果超过 131071,那么getsockopt(s, SOL_SOCKET, SO_RCVBUF, &rcv_size, &optlen)去到的值就等于 131071 * 2 = 262142[root@qljt core]# cat /proc/sys/net/core/wmem_max 131071131071:tcp 或 udp 发送缓冲区最大可设置值得一半。跟上面同一个道理3. udp收发缓冲区默认值[root@qljt core]# cat /proc/sys/net/core/rmem_default 111616:udp接收缓冲区的默认值[root@qljt core]# cat /proc/sys/net/core/wmem_default 111616111616:udp发送缓冲区的默认值. tcp 或udp收发缓冲区最小值tcp 或udp接收缓冲区的最小值为 256 bytes,由内核的宏决定;tcp 或udp发送缓冲区的最小值为 2048 bytes,由内核的宏决定setsockopt设置socket状态1.closesocket(一般不会立即关闭而经历TIME_WAIT的过程)后想继续重用该socket:BOOL bReuseaddr=TRUEsetsockopt(s,SOL_SOCKET ,SO_REUSEADDR,(const char*)&bReuseaddr,sizeof(BOOL))2. 如果要已经处于连接状态的soket在调用closesocket后强制关闭,不经历TIME_WAIT的过程:BOOL bDontLinger = FALSEsetsockopt(s,SOL_SOCKET,SO_DONTLINGER,(const char*)&bDontLinger,sizeof(BOOL))3.在send(),recv()过程中有时由于网络状况等原因,发收不能预期进行,而设置收发时限:int nNetTimeout=1000//1秒//发送时限setsockopt(socket,SOL_S0CKET,SO_SNDTIMEO,(char *)&nNetTimeout,sizeof(int))//接收时限setsockopt(socket,SOL_S0CKET,SO_RCVTIMEO,(char *)&nNetTimeout,sizeof(int))4.在send()的时候,返回的是实际发送出去的字节(同步)或发送到socket缓冲区的字节(异步)系统默认的状态发送和接收一次为8688字节(约为8.5K);在实际的过程中发送数据和接收数据量比较大,可以设置socket缓冲区,而避免了send(),recv()不断的循环收发:// 接收缓冲区int nRecvBuf=32*1024//设置为32Ksetsockopt(s,SOL_SOCKET,SO_RCVBUF,(const char*)&nRecvBuf,sizeof(int))//发送缓冲区int nSendBuf=32*1024//设置为32Ksetsockopt(s,SOL_SOCKET,SO_SNDBUF,(const char*)&nSendBuf,sizeof(int))5. 如果在发送数据的时,希望不经历由系统缓冲区到socket缓冲区的拷贝而影响程序的性能:int nZero=0setsockopt(socket,SOL_S0CKET,SO_SNDBUF,(char *)&nZero,sizeof(nZero))6.同上在recv()完成上述功能(默认情况是将socket缓冲区的内容拷贝到系统缓冲区):int nZero=0setsockopt(socket,SOL_S0CKET,SO_RCVBUF,(char *)&nZero,sizeof(int))7.一般在发送UDP数据报的时候,希望该socket发送的数据具有广播特性:BOOL bBroadcast=TRUEsetsockopt(s,SOL_SOCKET,SO_BROADCAST,(const char*)&bBroadcast,sizeof(BOOL))8.在client连接服务器过程中,如果处于非阻塞模式下的socket在connect()的过程中可以设置connect()延时,直到accpet()被呼叫(本函数设置只有在非阻塞的过程中有显著的作用,在阻塞的函数调用中作用不大)BOOL bConditionalAccept=TRUEsetsockopt(s,SOL_SOCKET,SO_CONDITIONAL_ACCEPT,(const char*)&bConditionalAccept,sizeof(BOOL))9.如果在发送数据的过程中(send()没有完成,还有数据没发送)而调用了closesocket(),以前我们一般采取的措施是"从容关闭"shutdown(s,SD_BOTH),但是数据是肯定丢失了,如何设置让程序满足具体应用的要求(即让没发完的数据发送出去后在关闭socket)?struct linger {u_short l_onoffu_short l_linger}linger m_sLingerm_sLinger.l_onoff=1//(在closesocket()调用,但是还有数据没发送完毕的时候容许逗留)// 如果m_sLinger.l_onoff=0则功能和2.)作用相同m_sLinger.l_linger=5//(容许逗留的时间为5秒)setsockopt(s,SOL_SOCKET,SO_LINGER,(const char*)&m_sLinger,sizeof(linger))设置套接口的选项。 #include <winsock.h> int PASCAL FAR setsockopt( SOCKET s, int level, int optname, const char FAR* optval, int optlen) s:标识一个套接口的描述字。 level:选项定义的层次;目前仅支持SOL_SOCKET和IPPROTO_TCP层次。 optname:需设置的选项。 optval:指针,指向存放选项值的缓冲区。 optlen:optval缓冲区的长度。注释:setsockopt()函数用于任意类型、任意状态套接口的设置选项值。尽管在不同协议层上存在选项,但本函数仅定义了最高的“套接口”层次上的选项。选项影响套接口的 *** 作,诸如加急数据是否在普通数据流中接收,广播数据是否可以从套接口发送等等。 有两种套接口的选项:一种是布尔型选项,允许或禁止一种特性;另一种是整形或结构选项。允许一个布尔型选项,则将optval指向非零整形数;禁止一个选项optval指向一个等于零的整形数。对于布尔型选项,optlen应等于sizeof(int);对其他选项,optval指向包含所需选项的整形数或结构,而optlen则为整形数或结构的长度。SO_LINGER选项用于控制下述情况的行动:套接口上有排队的待发送数据,且 closesocket()调用已执行。参见closesocket()函数中关于SO_LINGER选项对closesocket()语义的影响。应用程序通过创建一个linger结构来设置相应的 *** 作特性: struct linger {int l_onoffint l_linger } 为了允许SO_LINGER,应用程序应将l_onoff设为非零,将l_linger设为零或需要的超时值(以秒为单位),然后调用setsockopt()。为了允许SO_DONTLINGER(亦即禁止SO_LINGER),l_onoff应设为零,然后调用setsockopt()。 缺省条件下,一个套接口不能与一个已在使用中的本地地址捆绑(参见bind())。但有时会需要“重用”地址。因为每一个连接都由本地地址和远端地址的组合唯一确定,所以只要远端地址不同,两个套接口与一个地址捆绑并无大碍。为了通知WINDOWS套接口实现不要因为一个地址已被一个套接口使用就不让它与另一个套接口捆绑,应用程序可在bind()调用前先设置SO_REUSEADDR选项。请注意仅在bind()调用时该选项才被解释;故此无需(但也无害)将一个不会共用地址的套接口设置该选项,或者在bind()对这个或其他套接口无影响情况下设置或清除这一选项。 一个应用程序可以通过打开SO_KEEPALIVE选项,使得WINDOWS套接口实现在TCP连接情况下允许使用“保持活动”包。一个WINDOWS套接口实现并不是必需支持“保持活动”,但是如果支持的话,具体的语义将与实现有关,应遵守RFC1122“Internet主机要求-通讯层”中第 4.2.3.6节的规范。如果有关连接由于“保持活动”而失效,则进行中的任何对该套接口的调用都将以WSAENETRESET错误返回,后续的任何调用将以WSAENOTCONN错误返回。 TCP_NODELAY选项禁止Nagle算法。Nagle算法通过将未确认的数据存入缓冲区直到蓄足一个包一起发送的方法,来减少主机发送的零碎小数据包的数目。但对于某些应用来说,这种算法将降低系统性能。所以TCP_NODELAY可用来将此算法关闭。应用程序编写者只有在确切了解它的效果并确实需要的情况下,才设置TCP_NODELAY选项,因为设置后对网络性能有明显的负面影响。TCP_NODELAY是唯一使用IPPROTO_TCP层的选项,其他所有选项都使用SOL_SOCKET层。 如果设置了SO_DEBUG选项,WINDOWS套接口供应商被鼓励(但不是必需)提供输出相应的调试信息。但产生调试信息的机制以及调试信息的形式已超出本规范的讨论范围。setsockopt()支持下列选项。其中“类型”表明optval所指数据的类型。选项类型 意义SO_BROADCAST BOOL 允许套接口传送广播信息。SO_DEBUG BOOL 记录调试信息。SO_DONTLINER BOOL 不要因为数据未发送就阻塞关闭 *** 作。设置本选项相当于将SO_LINGER的l_onoff元素置为零。SO_DONTROUTE BOOL 禁止选径;直接传送。SO_KEEPALIVE BOOL 发送“保持活动”包。SO_LINGER struct linger FAR* 如关闭时有未发送数据,则逗留。SO_OOBINLINE BOOL 在常规数据流中接收带外数据。SO_RCVBUF int 为接收确定缓冲区大小。SO_REUSEADDR BOOL 允许套接口和一个已在使用中的地址捆绑(参见bind())。SO_SNDBUF int 指定发送缓冲区大小。TCP_NODELAY BOOL 禁止发送合并的Nagle算法。setsockopt()不支持的BSD选项有:选项名类型 意义SO_ACCEPTCONN BOOL 套接口在监听。SO_ERROR int 获取错误状态并清除。SO_RCVLOWAT int 接收低级水印。SO_RCVTIMEO int 接收超时。SO_SNDLOWAT int 发送低级水印。SO_SNDTIMEO int 发送超时。SO_TYPE int 套接口类型。IP_OPTIONS在IP头中设置选项。返回值: 若无错误发生,setsockopt()返回0。否则的话,返回SOCKET_ERROR错误,应用程序可通过WSAGetLastError()获取相应错误代码。错误代码: WSANOTINITIALISED:在使用此API之前应首先成功地调用WSAStartup()。 WSAENETDOWN:WINDOWS套接口实现检测到网络子系统失效。 WSAEFAULT:optval不是进程地址空间中的一个有效部分。 WSAEINPROGRESS:一个阻塞的WINDOWS套接口调用正在运行中。 WSAEINVAL:level值非法,或optval中的信息非法。 WSAENETRESET:当SO_KEEPALIVE设置后连接超时。 WSAENOPROTOOPT:未知或不支持选项。其中,SOCK_STREAM类型的套接口不支持SO_BROADCAST选项,SOCK_DGRAM 类型的套接口不支持SO_DONTLINGER 、SO_KEEPALIVE、SO_LINGER和SO_OOBINLINE选项。 WSAENOTCONN:当设置SO_KEEPALIVE后连接被复位。 WSAENOTSOCK:描述字不是一个套接口。

Linux系统能提供强大可靠的网络服务,并有管理程序对服务进行管理。例如我们熟悉的Web、FTP和电子邮件等,它们既可以单独运行,也可以被守护进程inetd调用,而且运行得都非常好。但我们不能仅停留在赞叹中,下面就给出两个服务程序程序和一个客户程序的例子,介绍服务程序和客户程序之间是如何沟通的。另外还要编辑配置一些文件,让服务程序也能接受服务管理程序管理。

这两个服务程序功能相同,但一个是独立服务程序,另一个是被inetd调用的服务程序。这是TCP/IP网络服务的两大类,这里将两个程序放在一起是为了比较程序结构和运行方式。两服务程序都在Red Hat Linux 7.1和TurboLinux 7.0上调试通过。

独立服务器

TCP和UDP是两大TCP/IP数据传输方式,套接口是建立服务器客户机连接的机制,首先介绍它们建立通信联系的过程,然后给出一个TCP服务程序例子。

1.TCP套接口通信方式

对于TCP服务器端,服务程序首先调用建立套接口的函数socket(),然后调用绑定服务IP地址和协议端口号函数bind()。绑定成功后调用被动监听函数listen()等待客户连接,还要调用获取连接请求函数accept(),并一直阻塞到客户连接请求的到达,这个函数获取客户机IP地址和协议端口号。

对于TCP客户端,客户程序启动后后调用建立套接口函数socket(),然后调用连接函数connect(),此函数与服务器通过三次握手建立连接。

服务器和客户机建立连接后,就可以使用读函数read()和写函数write()收发数据了。数据交换完成后便各自调用关闭套接口函数close()删除套接口。TCP套接口通信方式见图1所示。

图1 TCP套接口通信方式

2.UDP套接口通信方式

UDP程序与TCP的区别是无需建立连接。服务器首先启动,然后等待用户请求。客户机启动后便直接向服务器请求服务,服务器接到请求后给出应答。

对于UDP服务器端,服务程序首先调用套接口函数socket(),然后调用绑定IP地址和协议端口号函数bind()。之后调用函数recvfrom()接收客户数据,调用sendto()向客户发送数据。

对于UDP客户端,客户机程序启动后调用套接口函数socket(),然后调用sendto()向服务器发送数据,调用recvfrom()接收服务器数据。

双方数据交换成功后,各自调用关闭套接口函数close()关闭套接口。UDP套接口通信方式见图2所示。

图2 UDP套接口通信方式

下面给出独立服务程序的例子。这个程序虽然简单,但是与复杂程序有着相同的结构。

//程序名:server.c

//功能:服务器从客户机读入一个字符,并将排在此字符后面的字符回送客户机

//服务器端口:9000

#include "sys/types.h"

#include "sys/socket.h"

#include "stdio.h"

#include "netinet/in.h"

#include "arpa/inet.h"

#include "unistd.h"

int main()

{

int pid//用于存放fork()执行结果

int server_sockfd,client_sockfd//用于服务器和客户机套接口描述符

int bind_flag,listen_flag//用于存放bind()和listen()执行结果

int server_address_length,client_address_length//作为服务器客户机地址长变量

struct sockaddr_in server_address//作为服务器地址结构变量(含地址和端口)

struct sockaddr_in client_address//作为客户机地址结构变量(含地址和端口)

if((pid=fork())!=0) //用fork()产生新进程

exit(0)

setsid() //以子进程开始下面的程序

函数socket(),创建一个套接口,成功则返回套接口描述符。

server_sockfd=socket(AF_INET,SOCK_STREAM,0)

if(server_sockfd<0)

{

printf(“socket error /n”)

exit(1)

}

server_address.sin_family=AF_INET

函数htonl()用于将32位主机字节顺序转换为网络字节顺序,其中参数INADDR_ANY表示任何IP地址。

server_address.sin_addr.s_addr=htonl(INADDR_ANY)

函数htons()用于将16位主机字节顺序转换为网络字节顺序,其中的参数是绑定的端口号,读者可根据环境自行改动,目的是不与其它服务端口冲突。

server_address.sin_port=htons(9000)

server_address_length=sizeof(server_address)

函数bind()用于绑定本地地址和服务端口号,若调用成功返回值为0。

bind_flag=bind(server_sockfd,/

(struct sockaddr *)&server_address,/

server_address_length)

if(bind_flag<0)

{

printf(“bind error /n”)

exit(1)

}

函数listen(),指明服务器的队列长度,被动等待客户连接,调用成功返回值为0。

listen_flag=listen(server_sockfd,5)

if(listen_flag<0)

{

printf(“listen error /n”)

exit(1)

}

while(1)

{

char ch

函数accept()等待和获取用户请求,为每个新连接请求创建一个新的套接口,调用成功返回新套接口描述符。

client_sockfd=accept(server_sockfd,/

(struct sockaddr *)&client_address,/

&client_address_length)

函数read()和write()用于在服务器和客户机之间传送数据,调用成功返回读和写的字节数。

函数close(),用于程序使用完一个套接口后关闭套接口,调用成功返回值0。其中的参数为accept()创建的套接口的描述符client_sockfd。

read(client_sockfd,&ch,1)

printf(“cli_ch=%c”,ch)

ch++

write(client_sockfd,&ch,1)

close(client_sockfd)

}

}

程序完成后就可以使用命令进行编译。在命令行中输入“gcc -o server server.c”,将server.c编译成可执行程序server,这时便可用客户程序进行测试。在命令行执行“./server”启动服务程序,执行“netstat -na”查看有无server的服务端口。如果存在,则执行下面编写的客户程序“./client”。不过这仅是手工启动的方法,下面给出用服务管理程序管理server程序的方法。只要在目录/etc/rc.d/init.d下放入服务程序的脚本就能被服务程序读到。在命令行执行“touch server”创建文件server,并将文件属性改成可执行。在管理程序中并不能看到此服务名,脚本文件必须有一些结构才能被管理程序认为是服务程序脚本。

为了减少工作量,拷贝/etc/rc.d/init.d下脚本httpd,将拷贝脚本名命名为server,然后对其编辑。

(1)执行“cp httpd server”。

(2)用文本编辑器vi(其它编辑器亦可)将server打开进入编辑状态。首先用字符串server替换httpd。然后找到daemon server行,如果编写的程序放在变量PATH目录中,不需要修改此行;如果把服务程序放在其它目录中,就要写服务的全路径。例如程序在/root的目录中,就要写成daemon /root/server,还要删除“rm -f /var/run/server.pid”这一行。

(3)执行“chmod 755 server”,将server属性设定为可执行。

此时就可以用chkconfig、ntsysv等工具,在希望的运行级中增加这个新服务程序,然后测试客户机与服务器能否通信。

被xinetd调用的服务程序

在Linux系统中,有很多服务是被xinetd(较早版本使用的是inetd)超级守护服务器启动的。其实凡是基于TCP和UDP的服务都可使用超级守护进程启动,只是在服务量很大影响效率的情况下不被采用。

1.依赖xinetd启动的服务建立通信过程

为了与独立服务器程序比较,我们看一下依赖xinetd的服务器是如何启动的。

(1)xinetd启动时读取/etc/xinetd目录中的文件(早期版本为/etc/inetd文件),根据其中的内容给所有允许启动的服务创建一个指定类型的套接口,并将套接口放入select()中的描述符集合中。

(2)对每个套接口绑定bind(),所用的端口号和其它参数来自/etc/xinetd目录下每个服务的配置文件。

(3)如果是TCP套接口就调用函数listen(),等待用户连接。如果是UDP套接口,就不需调用此函数。

(4)所有套接口建立后,调用函数select()检查哪些套接口是活动的。

(5)若select()返回TCP套接口,就调用accept()接收这个连接。如果为UDP,就不需调用此函数。

(6)xinetd调用fork()创建子进程,由子进程处理连接请求。

◆ 子进程关闭所有其它描述符,只剩下套接口描述符。这个套接口描述符对于TCP是accept()返回的套接口,对于UDP为最初建立的套接口。然后子进程连续三次dup()函数,将套接口描述符复制到0、1和2,它们分别对应标准输入、标准输出和标准错误输出,并关闭套接口描述符。

◆ 子进程查看/etc/xinetd下文件中的用户,如果不是root用户,就用调用命令setuid和setgid将用户ID和组ID改成文件中指定的用户。

(7)对于TCP套接口,与用户交流结束后父进程需要关闭已连接套接口。父进程重新处于select()状态,等待下一个可读的套接口。

最后调用配置文件中指定的外部服务程序,外部程序启动后就可与用户进行信息传递了。

2.为xinetd编写专门的服务程序

除了独立服务程序能被xinetd启动外,还可以为xinetd编写专门的程序。此处的例子程序与上面server.c功能相同。不过两者的程序区别是很大的,此例的代码仅相当于上面传输数据的部分。我们还将程序名定为server.c,所以不能放在相同目录中,同名仅是为了和上面程序对照。

#include "unistd.h"

int main()

{

char ch

read(0,&ch,1)

ch++

write(1,&ch,1)

}

将程序编译成可执行文件,并做些设置就可被xinetd启动。注意不要和上面的独立服务程序server一起启动,因为客户程序写得比较简单,访问的是固定端口,服务器都设成了相同的端口号。

(1)编辑/etc/services文件,在行末增加一条记录:

server 9000/tcp

(2)在目录/etc/xinetd.d下编写文件server,内容为:

service server

{

disable = no

socket_type = stream

protocol = tcp

wait = no

user = root

server = /home/test/server (此处设置成自己程序所在的目录)

}

如果使用的是较早版本,则需在/etc/inetd.conf文件中添加下面的行:

server tcp nowait root /path/to/yourdirectory/server

(3)执行/etc/rc.d/initd.d/xinetd restart重新启动xinetd服务器。早期版本执行/etc/rc.d/initd.d/inetd restart重新启动inetd。

(4)执行netstat -an查看有没有server程序使用的端口号,如果有就可使用下面客户机程序进行测试了。

客户机程序

下面就客户机函数做一简单介绍。

//程序名client.c

/*功能:从客户的控制台输入一个字符,然后将这个字符送到服务器,并将服务器返回的字符显示出来*/

#include "sys/types.h"

#include "sys/socket.h"

#include "stdio.h"

#include "netinet/in.h"

#include "arpa/inet.h"

#include "unistd.h"

int main()

{

int sockfd//

int address_len

int connect_flag

struct sockaddr_in address

int connect_result

char client_ch,server_ch

函数socket()用于建立一个套接口,创建成功返回套接口描述符。

sockfd=socket(AF_INET,SOCK_STREAM,0)

if(sockfd<0)

{

printf(“sockfd error /n”)

}

address.sin_family=AF_INET

address.sin_addr.s_addr=inet_addr(“192.168.0.1”)/*读者根据自己环境改成服务器地址*/

address.sin_port=htons(9000)

address_len=sizeof(address)

函数connect()用于与服务器建立一个主动连接,调用成功返回值为0。

connect_flag=connect(sockfd,(struct sockaddr *)&address,address_len)

if(connect_flag==-1)

{

perror(“client”)

exit(1)

}

printf(“Input a character :”)

函数scanf()用于从控制台输入一个字符,并将字符存入client_ch的地址。函数write()和read()用于传输数据。函数printf()在客户机屏幕上显示服务器传回的字符。函数close()关闭套接口。

scanf(“%c”,&client_ch)

write(sockfd,&client_ch,1)

read(sockfd,&server_ch,1)

printf(“character from server : %c/n”,server_ch)

close(sockfd)

exit(0)

}

执行命令“gcc -o client client.c”,将client.c编译成client。执行“./client”,在程序提示下输入一个字符,就能看到服务器传回的字符。

以上介绍的仅是简单的例子。平时见到的服务程序远比它复杂,而且很多是多协议服务程序或是多协议多服务程序。多协议服务程序就是在main()中分别创建供服务的TCP和UDP套接口。为每个服务分别写出相应程序好处是便于控制,但是这样每个服务都启动两个服务器,而它们的算法响应是一样的,就要耗费不必要的资源,并且出了问题排错也较困难。多服务是将不同的服务集成在一起由一个程序完成,可用一个数组表示服务,数组中的每一项表示某协议某服务的一种,这样很容易扩展程序的服务功能。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/yw/7229398.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-03
下一篇 2023-04-03

发表评论

登录后才能评论

评论列表(0条)

保存