linux源码怎么用

linux源码怎么用,第1张

目录下有没有make或者makefile文件?有的话make一下就行。进入目录make回车“makefile定义了一系列的规则来指定,哪些文件需要先编译,哪些文件需要后编译,哪些文件需要重新编译,甚至于进行更复杂的功能 *** 作,因为 makefile就像一个Shell脚本一样”

一、准备工作

a) 首先,你要有一台PC(这不废话么^_^),装好了Linux。

b) 安装好GCC(这个指的是host gcc,用于编译生成运行于pc机程序的)、make、ncurses等工具。

c) 下载一份纯净的Linux内核源码包,并解压好。

注意,如果你是为当前PC机编译内核,最好使用相应的Linux发行版的源码包。

不过这应该也不是必须的,因为我在我的Fedora 13上(其自带的内核版本是2.6.33.3),就下载了一个标准的内核linux-2.6.32.65.tar.xz,并且顺利的编译安装成功了,上电重启都OK的。不过,我使用的.config配置文件,是Fedora 13自带内核的配置文件,即/lib/modules/`uname -r`/build/.config

d) 如果你是移植Linux到嵌入式系统,则还要再下载安装交叉编译工具链。

例如,你的目标单板CPU可能是arm或mips等cpu,则安装相应的交叉编译工具链。安装后,需要将工具链路径添加到PATH环境变量中。例如,你安装的是arm工具链,那么你在shell中执行类似如下的命令,假如有类似的输出,就说明安装好了。

[root@localhost linux-2.6.33.i686]# arm-linux-gcc --version

arm-linux-gcc (Buildroot 2010.11) 4.3.5

Copyright (C) 2008 Free Software Foundation, Inc.

This is free softwaresee the source for copying conditions. There is NO

warrantynot even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

注:arm的工具链,可以从这里下载:回复“ARM”即可查看。

二、设置编译目标

在配置或编译内核之前,首先要确定目标CPU架构,以及编译时采用什么工具链。这是最最基础的信息,首先要确定的。

如果你是为当前使用的PC机编译内核,则无须设置。

否则的话,就要明确设置。

这里以arm为例,来说明。

有两种设置方法():

a) 修改Makefile

打开内核源码根目录下的Makefile,修改如下两个Makefile变量并保存。

ARCH := arm

CROSS_COMPILE := arm-linux-

注意,这里cross_compile的设置,是假定所用的交叉工具链的gcc程序名称为arm-linux-gcc。如果实际使用的gcc名称是some-thing-else-gcc,则这里照葫芦画瓢填some-thing-else-即可。总之,要省去名称中最后的gcc那3个字母。

b) 每次执行make命令时,都通过命令行参数传入这些信息。

这其实是通过make工具的命令行参数指定变量的值。

例如

配置内核时时,使用

make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig

编译内核时使用

make ARCH=arm CROSS_COMPILE=arm-linux-

注意,实际上,对于编译PC机内核的情况,虽然用户没有明确设置,但并不是这两项没有配置。因为如果用户没有设置这两项,内核源码顶层Makefile(位于源码根目录下)会通过如下方式生成这两个变量的值。

SUBARCH := $(shell uname -m | sed -e s/i.86/i386/ -e s/sun4u/sparc64/ \

-e s/arm.*/arm/ -e s/sa110/arm/ \

-e s/s390x/s390/ -e s/parisc64/parisc/ \

-e s/ppc.*/powerpc/ -e s/mips.*/mips/ \

-e s/sh[234].*/sh/ )

ARCH?= $(SUBARCH)

CROSS_COMPILE ?=

经过上面的代码,ARCH变成了PC编译机的arch,即SUBARCH。因此,如果PC机上uname -m输出的是ix86,则ARCH的值就成了i386。

而CROSS_COMPILE的值,如果没配置,则为空字符串。这样一来所使用的工具链程序的名称,就不再有类似arm-linux-这样的前缀,就相当于使用了PC机上的gcc。

最后再多说两句,ARCH的值还需要再进一步做泛化。因为内核源码的arch目录下,不存在i386这个目录,也没有sparc64这样的目录。

因此顶层makefile中又构造了一个SRCARCH变量,通过如下代码,生成他的值。这样一来,SRCARCH变量,才最终匹配到内核源码arch目录中的某一个架构名。

SRCARCH := $(ARCH)

ifeq ($(ARCH),i386)

SRCARCH := x86

endif

ifeq ($(ARCH),x86_64)

SRCARCH := x86

endif

ifeq ($(ARCH),sparc64)

SRCARCH := sparc

endif

ifeq ($(ARCH),sh64)

SRCARCH := sh

endif

三、配置内核

内核的功能那么多,我们需要哪些部分,每个部分编译成什么形式(编进内核还是编成模块),每个部分的工作参数如何,这些都是可以配置的。因此,在开始编译之前,我们需要构建出一份配置清单,放到内核源码根目录下,命名为.config文件,然后根据此.config文件,编译出我们需要的内核。

但是,内核的配置项太多了,一个一个配,太麻烦了。而且,不同的CPU架构,所能配置的配置项集合,是不一样的。例如,某种CPU的某个功能特性要不要支持的配置项,就是与CPU架构有关的配置项。所以,内核提供了一种简单的配置方法。

以arm为例,具体做法如下。

a) 根据我们的目标CPU架构,从内核源码arch/arm/configs目录下,找一个与目标系统最接近的配置文件(例如s3c2410_defconfig),拷贝到内核源码根目录下,命名为.config。

注意,如果你是为当前PC机编译内核,最好拷贝如下文件到内核源码根目录下,做为初始配置文件。这个文件,是PC机当前运行的内核编译时使用的配置文件。

/lib/modules/`uname -r`/build/.config

这里顺便多说两句,PC机内核的配置文件,选择的功能真是多。不编不知道,一编才知道。Linux发行方这样做的目的,可能是想让所发行的Linux能够满足用户的各种需求吧。

b) 执行make menuconfig对此配置做一些需要的修改,退出时选择保存,就将新的配置更新到.config文件中了。

Linux *** 作系统的诞生、发展和成长过程始终依赖着五个重要支柱:Unix *** 作系统、MINIX *** 作系统、GNU计划、POSIX标准和Internet网络。

20世纪80年代,计算机硬件的性能不断提高,PC的市场不断扩大,当时可供计算机选用的 *** 作系统主要有Unix、DOS和MacOS这几种。Unix价格昂贵,不能运行于PC;DOS显得简陋,且源代码被软件厂商严格保密;MacOS是一种专门用于苹果计算机的 *** 作系统。

此时,计算机科学领域迫切需要一个更加完善、强大、廉价和完全开放的 *** 作系统。由于供教学使用的典型 *** 作系统很少,因此当时在荷兰当教授的美国人AndrewS.Tanenbaum编写了一个 *** 作系统,名为MINIX,为了向学生讲述 *** 作系统内部工作原理。

MINIX虽然很好,但只是一个用于教学目的的简单 *** 作系统,而不是一个强有力的实用 *** 作系统,然而最大的好处就是公开源代码。

全世界学计算机的学生都通过钻研MINIX源代码来了解电脑里运行的MINIX *** 作系统,芬兰赫尔辛基大学大学二年级的学生Linus Torvalds就是其中一个,在吸收了MINIX精华的基础上,Linus于1991年写出了属于自己的Linux *** 作系统,版本为Linux0.01,是Linux时代开始的标志。

他利用Unix的核心,去除繁杂的核心程序,改写成适用于一般计算机的x86系统,并放在网络上供大家下载,1994年推出完整的核心Version1.0,至此,Linux逐渐成为功能完善、稳定的 *** 作系统,并被广泛使用。

扩展资料

主要特性

1、基本思想

Linux的基本思想有两点:

第一,一切都是文件;

第二,每个文件都有确定的用途。其中第一条详细来讲就是系统中的所有都归结为一个文件,包括命令、硬件和软件设备、 *** 作系统、进程等等对于 *** 作系统内核而言,都被视为拥有各自特性或类型的文件。至于说Linux是基于Unix的,很大程度上也是因为这两者的基本思想十分相近。

2、完全免费

Linux是一款免费的 *** 作系统,用户可以通过网络或其他途径免费获得,并可以任意修改其源代码。这是其他的 *** 作系统所做不到的。正是由于这一点,来自全世界的无数程序员参与了Linux的修改、编写工作,程序员可以根据自己的兴趣和灵感对其进行改变,这让Linux吸收了无数程序员的精华,不断壮大。

3、完全兼容POSIX1.0标准

这使得可以在Linux下通过相应的模拟器运行常见的DOS、Windows的程序。这为用户从Windows转到Linux奠定了基础。许多用户在考虑使用Linux时,就想到以前在Windows下常见的程序是否能正常运行,这一点就消除了他们的疑虑。

4、多用户、多任务

Linux支持多用户,各个用户对于自己的文件设备有自己特殊的权利,保证了各用户之间互不影响。多任务则是现代电脑最主要的一个特点,Linux可以使多个程序同时并独立地运行。

5、良好的界面

Linux同时具有字符界面和图形界面。在字符界面用户可以通过键盘输入相应的指令来进行 *** 作。它同时也提供了类似Windows图形界面的X-Window系统,用户可以使用鼠标对其进行 *** 作。在X-Window环境中就和在Windows中相似,可以说是一个Linux版的Windows。

6、支持多种平台

Linux可以运行在多种硬件平台上,如具有x86、680x0、SPARC、Alpha等处理器的平台。此外Linux还是一种嵌入式 *** 作系统,可以运行在掌上电脑、机顶盒或游戏机上。2001年1月份发布的Linux 2.4版内核已经能够完全支持Intel64位芯片架构。同时Linux也支持多处理器技术。多个处理器同时工作,使系统性能大大提高。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/yw/7374333.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-04
下一篇 2023-04-04

发表评论

登录后才能评论

评论列表(0条)

保存