linux加强BGP路由协议的步骤有哪些

linux加强BGP路由协议的步骤有哪些,第1张

路由协议通过在路由器之间共享路由信息来支持可路由协议。 1、路由信息在相邻路由器之间传递,确保所有路由器知道到其它路由器的路径。总之,路由协议创建了路由表,描述了网络拓扑结构; 2、路由协议与路由器协同工作,执行路由选择和数据包转...

linux 命令配置网络连接首先,先了解传统的网络设置命令:

1. 使用ifconfig命令设置并查看网络接口情况

示例1: 设置eth0的IP,同时激活设备:

# ifconfig eth0 192.168.4.1 netmask 255.255.255.0 up

示例2: 设置eth0别名设备 eth0:1 的IP,并添加路由

# ifconfig eth0:1 192.168.4.2

# route add ?host 192.168.4.2 dev eth0:1

示例3:激活(禁用)设备

# ifconfig eth0:1 up(down)

示例4:查看所有(指定)网络接口设置

# ifconfig (eth0)

2. 使用route 命令设置路由表

示例1:添加到主机路由

# route add ?host 192.168.4.2 dev eth0:1

# route add ?host 192.168.4.1 gw 192.168.4.250

示例2:添加到网络的路由

# route add ?net IP netmask MASK eth0

# route add ?net IP netmask MASK gw IP

# route add ?net IP/24 eth1

示例3:添加默认网关

# route add default gw IP

示例4:删除路由

# route del ?host 192.168.4.1 dev eth0:1

示例5:查看路由信息

# route 或 route -n (-n 表示不解析名字,列出速度会比route 快)

3.ARP 管理命令

示例1:查看ARP缓存

# arp

示例2: 添加

# arp ?s IP MAC

示例3: 删除

# arp ?d IP

4. ip是iproute2软件包里面的一个强大的网络设置工具,他能够替代一些传统的网络管理工具。例如:ifconfig、route等,

上面的示例完万能用下面的ip命令实现,而且ip命令能实现更多的功能.下面介绍一些示例:

4.0 ip命令的语法

ip命令的用法如下:

ip [OPTIONS] OBJECT [COMMAND [ARGUMENTS]]

4.1 ip link set--改动设备的属性. 缩写:set、s

示例1:up/down 起动/关闭设备。

# ip link set dev eth0 up

这个等于传统的 # ifconfig eth0 up(down)

示例2:改动设备传输队列的长度。

参数:txqueuelen NUMBER或txqlen NUMBER

# ip link set dev eth0 txqueuelen 100

示例3:改动网络设备MTU(最大传输单元)的值。

# ip link set dev eth0 mtu 1500

示例4: 修改网络设备的MAC地址

参数: address LLADDRESS

# ip link set dev eth0 address 00:01:4f:00:15:f1

4.2 ip link show--显示设备属性. 缩写:show、list、lst、sh、ls、l

-s选项出现两次或更多次,ip会输出更为周详的错误信息统计。

示例:

# ip -s -s link ls eth0

eth0: mtu 1500 qdisc cbq qlen 100

link/ether 00:a0:cc:66:18:78 brd ff:ff:ff:ff:ff:ff

RX: bytes packets errors dropped overrun mcast

2449949362 2786187 0 0 0 0

RX errors: length crc frame fifo missed

0 0 0 0 0

TX: bytes packets errors dropped carrier collsns

178558497 1783946 332 0 332 35172

TX errors: aborted fifo window heartbeat

0 0 0 332

这个命令等于传统的 ifconfig eth0

5.1 ip address add--添加一个新的协议地址. 缩写:add、a

示例1:为每个地址设置一个字符串作为标签。为了和Linux-2.0的网络别名兼容,这个字符串必须以设备名开头,接着一个冒号,

# ip addr add local 192.168.4.1/28 brd + label eth0:1 dev eth0

示例2: 在以太网接口eth0上增加一个地址192.168.20.0,掩码长度为24位(155.155.155.0),标准广播地址,标签为eth0:Alias:

# ip addr add 192.168.4.2/24 brd + dev eth1 label eth1:1

这个命令等于传统的: ifconfig eth1:1 192.168.4.2

5.2 ip address delete--删除一个协议地址. 缩写:delete、del、d

# ip addr del 192.168.4.1/24 brd + dev eth0 label eth0:Alias1

5.3 ip address show--显示协议地址. 缩写:show、list、lst、sh、ls、l

# ip addr ls eth0

5.4.ip address flush--清除协议地址. 缩写:flush、f

示例1 : 删除属于私网10.0.0.0/8的所有地址:

# ip -s -s a f to 10/8

示例2 : 取消所有以太网卡的IP地址

# ip -4 addr flush label "eth0"

6. ip neighbour--neighbour/arp表管理命令

缩写 neighbour、neighbor、neigh、n

命令 add、change、replace、delete、fulsh、show(或list)

6.1 ip neighbour add -- 添加一个新的邻接条目

ip neighbour change--修改一个现有的条目

ip neighbour replace--替换一个已有的条目

缩写:add、a;change、chg;replace、repl

示例1: 在设备eth0上,为地址10.0.0.3添加一个permanent ARP条目:

# ip neigh add 10.0.0.3 lladdr 0:0:0:0:0:1 dev eth0 nud perm

示例2:把状态改为reachable

# ip neigh chg 10.0.0.3 dev eth0 nud reachable

6.2.ip neighbour delete--删除一个邻接条目

示例1:删除设备eth0上的一个ARP条目10.0.0.3

# ip neigh del 10.0.0.3 dev eth0

6.3.ip neighbour show--显示网络邻居的信息. 缩写:show、list、sh、ls

示例1: # ip -s n ls 193.233.7.254

193.233.7.254. dev eth0 lladdr 00:00:0c:76:3f:85 ref 5 used 12/13/20 nud reachable

6.4.ip neighbour flush--清除邻接条目. 缩写:flush、f

示例1: (-s 能显示周详信息)

# ip -s -s n f 193.233.7.254

7. 路由表管理

7.1.缩写 route、ro、r

7.5.路由表

从Linux-2.2开始,内核把路由归纳到许多路由表中,这些表都进行了编号,编号数字的范围是1到255。另外,

为了方便,还能在/etc/iproute2/rt_tables中为路由表命名。

默认情况下,所有的路由都会被插入到表main(编号254)中。在进行路由查询时,内核只使用路由表main。

7.6.ip route add -- 添加新路由

ip route change -- 修改路由

ip route replace -- 替换已有的路由

缩写:add、a;change、chg;replace、repl

示例1: 设置到网络10.0.0/24的路由经过网关193.233.7.65

# ip route add 10.0.0/24 via 193.233.7.65

示例2: 修改到网络10.0.0/24的直接路由,使其经过设备dummy

# ip route chg 10.0.0/24 dev dummy

示例3: 实现链路负载平衡.加入缺省多路径路由,让ppp0和ppp1分担负载(注意:scope值并非必需,他只不过是告诉内核,

这个路由要经过网关而不是直连的。实际上,如果你知道远程端点的地址,使用via参数来设置就更好了)。

# ip route add default scope global nexthop dev ppp0 nexthop dev ppp1

# ip route replace default scope global nexthop dev ppp0 nexthop dev ppp1

示例4: 设置NAT路由。在转发来自192.203.80.144的数据包之前,先进行网络地址转换,把这个地址转换为193.233.7.83

# ip route add nat 192.203.80.142 via 193.233.7.83

示例5: 实现数据包级负载平衡,允许把数据包随机从多个路由发出。weight 能设置权重.

# ip route replace default equalize nexthop via 211.139.218.145 dev eth0 weight 1 nexthop via 211.139.218.145 dev eth1 weight 1

7.7.ip route delete-- 删除路由

缩写:delete、del、d

示例1:删除上一节命令加入的多路径路由

# ip route del default scope global nexthop dev ppp0 nexthop dev ppp1

7.8.ip route show -- 列出路由

缩写:show、list、sh、ls、l

示例1: 计算使用gated/bgp协议的路由个数

# ip route ls proto gated/bgp |wc

1413 9891 79010

示例2: 计算路由缓存里面的条数,由于被缓存路由的属性可能大于一行,以此需要使用-o选项

# ip -o route ls cloned |wc

159 2543 18707

示例3: 列出路由表TABLEID里面的路由。缺省设置是table main。TABLEID或是个真正的路由表ID或是/etc/iproute2/rt_tables文件定义的字符串,

或是以下的特别值:

all -- 列出所有表的路由;

cache -- 列出路由缓存的内容。

ip ro ls 193.233.7.82 tab cache

示例4: 列出某个路由表的内容

# ip route ls table fddi153

示例5: 列出默认路由表的内容

# ip route ls

这个命令等于传统的: route

7.9.ip route flush -- 擦除路由表

示例1: 删除路由表main中的所有网关路由(示例:在路由监视程式挂掉之后):

# ip -4 ro flush scope global type unicast

示例2:清除所有被克隆出来的IPv6路由:

# ip -6 -s -s ro flush cache

示例3: 在gated程式挂掉之后,清除所有的BGP路由:

# ip -s ro f proto gated/bgp

示例4: 清除所有ipv4路由cache

# ip route flush cache

*** IPv4 routing cache is flushed.

7.10 ip route get -- 获得单个路由 .缩写:get、g

使用这个命令能获得到达目的地址的一个路由及他的确切内容。

ip route get命令和ip route show命令执行的 *** 作是不同的。ip route show命令只是显示现有的路由,而ip route get命令在必要时会派生出新的路由。

示例1: 搜索到193.233.7.82的路由

# ip route get 193.233.7.82

193.233.7.82 dev eth0 src 193.233.7.65 realms inr.ac cache mtu 1500 rtt 300

示例2: 搜索目的地址是193.233.7.82,来自193.233.7.82,从eth0设备到达的路由(这条命令会产生一条非常有意思的路由,这是一条到193.233.7.82的回环路由)

# ip r g 193.233.7.82 from 193.233.7.82 iif eth0

193.233.7.82 from 193.233.7.82 dev eth0 src 193.233.7.65 realms inr.ac/inr.ac

cache mtu 1500 rtt 300 iif eth0

8. ip route -- 路由策略数据库管理命令

命令add、delete、show(或list)

注意:策略路由(policy routing)不等于路由策略(rouing policy)。

在某些情况下,我们不只是需要通过数据包的目的地址决定路由,可能还需要通过其他一些域:源地址、IP协议、传输层端口甚至数据包的负载。

这就叫做:策略路由(policy routing)。

8.5. ip rule add -- 插入新的规则

ip rule delete -- 删除规则

缩写:add、a;delete、del、d

示例1: 通过路由表inr.ruhep路由来自源地址为192.203.80/24的数据包

ip ru add from 192.203.80/24 table inr.ruhep prio 220

示例2:把源地址为193.233.7.83的数据报的源地址转换为192.203.80.144,并通过表1进行路由

ip ru add from 193.233.7.83 nat 192.203.80.144 table 1 prio 320

示例3:删除无用的缺省规则

ip ru del prio 32767

8.7. ip rule show -- 列出路由规则

缩写:show、list、sh、ls、l

示例1: # ip ru ls

0: from all lookup local

32762: from 192.168.4.89 lookup fddi153

32764: from 192.168.4.88 lookup fddi153

32766: from all lookup main

32767: from all lookup 253

9. ip maddress -- 多播地址管理

缩写:show、list、sh、ls、l

9.3.ip maddress show -- 列出多播地址

示例1: # ip maddr ls dummy

9.4. ip maddress add -- 加入多播地址

ip maddress delete -- 删除多播地址

缩写:add、a;delete、del、d

使用这两个命令,我们能添加/删除在网络接口上监听的链路层多播地址。这个命令只能管理链路层地址。

示例1: 增加 # ip maddr add 33:33:00:00:00:01 dev dummy

示例2: 查看 # ip -O maddr ls dummy

2: dummy

link 33:33:00:00:00:01 users 2 static

link 01:00:5e:00:00:01

示例3: 删除 # ip maddr del 33:33:00:00:00:01 dev dummy

10.ip mroute -- 多播路由缓存管理

10.4. ip mroute show -- 列出多播路由缓存条目

缩写:show、list、sh、ls、l

示例1:查看 # ip mroute ls

(193.232.127.6, 224.0.1.39) Iif: unresolved

(193.232.244.34, 224.0.1.40) Iif: unresolved

(193.233.7.65, 224.66.66.66) Iif: eth0 Oifs: pimreg

示例2:查看 # ip -s mr ls 224.66/16

(193.233.7.65, 224.66.66.66) Iif: eth0 Oifs: pimreg

9383 packets, 300256 bytes

11. ip tunnel -- 通道设置

缩写 tunnel、tunl

11.4.ip tunnel add -- 添加新的通道

ip tunnel change -- 修改现有的通道

ip tunnel delete -- 删除一个通道

缩写:add、a;change、chg;delete、del、d

示例1:建立一个点对点通道,最大TTL是32

# ip tunnel add Cisco mode sit remote 192.31.7.104 local 192.203.80.1 ttl 32

11.4.ip tunnel show -- 列出现有的通道

缩写:show、list、sh、ls、l

示例1: # ip -s tunl ls Cisco

12. ip monitor和rtmon -- 状态监视

ip命令能用于连续地监视设备、地址和路由的状态。这个命令选项的格式有点不同,命令选项的名字叫做monitor,接着是 *** 作对象:

ip monitor [ file FILE ] [ all | OBJECT-LIST ]

示例1: # rtmon file /var/log/rtmon.log

示例2: # ip monitor file /var/log/rtmon.log r

网络层(network layer)是实现互联网的最重要的一层。正是在网络层面上,各个局域网根据IP协议相互连接,最终构成覆盖全球的Internet。更高层的协议,无论是TCP还是UDP,必须通过网络层的IP数据包(datagram)来传递信息。 *** 作系统也会提供该层的socket,从而允许用户直接 *** 作IP包。

IP数据包是符合IP协议的信息(也就是0/1序列),我们后面简称IP数据包为IP包。IP包分为头部(header)和数据(Data)两部分。数据部分是要传送的信息,头部是为了能够实现传输而附加的信息(这与以太网帧的头部功能相类似,如果对帧感到陌生,可参看 小喇叭 一文)。

IP协议可以分为IPv4和IPv6两种。IPv6是改进版本,用于在未来取代IPv4协议。出于本文的目的,我们可以暂时忽略两者的区别,只以IPv4为例。下面是IPv4的格式

IPv4包 我们按照4 bytes将整个序列折叠,以便更好的显示

与帧类似,IP包的头部也有多个区域。我们将注意力放在红色的发出地(source address)和目的地(destination address)。它们都是IP地址。IPv4的地址为4 bytes的长度(也就是32位)。我们通常将IPv4的地址分为四个十进制的数,每个数的范围为0-255,比如192.0.0.1就是一个IP地址。填写在IP包头部的是该地址的二进制形式。

IP地址是全球地址,它可以识别”社区”(局域网)和”房子”(主机)。这是通过将IP地址分类实现的。

IP class    From          To                Subnet Mask

A           1.0.0.0       126.255.255.255    255.0.0.0

B           128.0.0.0     191.255.255.255    255.255.0.0

C           192.0.0.0     223.255.255.255    255.255.255.0

每个IP地址的32位分为前后两部分,第一部分用来区分局域网,第二个部分用来区分该局域网的主机。子网掩码(Subnet Mask)告诉我们这两部分的分界线,比如255.0.0.0(也就是8个1和24个0)表示前8位用于区分局域网,后24位用于区分主机。由于A、B、C分类是已经规定好的,所以当一个IP地址属于B类范围时,我们就知道它的前16位和后16位分别表示局域网和主机。

网络协议概览 中说,IP地址是分配给每个房子(计算机)的“邮编”。但这个说法并不精确。IP地址实际上识别的是网卡(NIC, Network Interface Card)。网卡是计算机的一个硬件,它在接收到网路信息之后,将信息交给计算机(处理器/内存)。当计算机需要发送信息的时候,也要通过网卡发送。一台计算机可以有不只一个网卡,比如笔记本就有一个以太网卡和一个WiFi网卡。计算机在接收或者发送信息的时候,要先决定想要通过哪个网卡。

NIC

路由器(router)实际上就是一台配备有多个网卡的专用电脑。它让网卡接入到不同的网络中,这样,就构成在 网络协议概览 中所说的邮局。比如下图中位于中间位置的路由器有两个网卡,地址分别为199.165.145.17和199.165.146.3。它们分别接入到两个网络:199.165.145和199.165.146。

IP包的传输要通过路由器的接力。每一个主机和路由中都存有一个路由表(routing table)。路由表根据目的地的IP地址,规定了等待发送的IP包所应该走的路线。就好像下图的路标,如果地址是“东京”,那么请转左;如果地址是“悉尼”,那么请向右。

A real world routing table

比如我们从主机145.17生成发送到146.21的IP包:铺开信纸,写好信的开头(剩下数据部分可以是TCP包,可以是UDP包,也可以是任意乱写的字,我们暂时不关心),注明目的地IP地址(199.165.146.21)和发出地IP地址(199.165.145.17)。主机145.17随后参照自己的routing table,里面有三行记录:

145.17 routing table (Genmask为子网掩码,Iface用于说明使用哪个网卡接口)

Destination        Gateway             Genmask             Iface

199.165.145.0      0.0.0.0             255.255.255.0       eth0

0.0.0.0            199.165.145.17      0.0.0.0             eth0

这里有两行记录。

第一行表示,如果IP目的地是199.165.145.0这个网络的主机,那么只需要自己在eth0上的网卡直接传送(“本地社区”:直接送达),不需要前往router(Gateway 0.0.0.0 = “本地送信”)。

第二行表示所有不符合第一行的IP目的地,都应该送往Gateway 199.165.145.17,也就是中间router接入在eth0的网卡IP地址(邮局在eth0的分支)。

我们的IP包目的地为199.165.146.21,不符合第一行,所以按照第二行,发送到中间的router。主机145.17会将IP包放入帧的payload,并在帧的头部写上199.165.145.17对应的MAC地址,这样,就可以按照 以太网与wifi协议 中的方法在局域网中传送了。

中间的router在收到IP包之后(实际上是收到以太协议的帧,然后从帧中的payload读取IP包),提取目的地IP地址,然后对照自己的routing table:

Destination        Gateway             Genmask             Iface

199.165.145.0      0.0.0.0             255.255.255.0       eth0

199.165.146.0      0.0.0.0             255.255.255.0       eth1

0.0.0.0            199.165.146.8       0.0.0.0             eth1

从前两行我们看到,由于router横跨eth0和eth1两个网络,它可以直接通过eth0和eth1上的网卡直接传送IP包。

第三行表示,如果是前面两行之外的IP地址,则需要通过eth1,送往199.165.146.8(右边的router)。

我们的目的地符合第二行,所以将IP放入一个新的帧中,

在帧的头部写上199.165.146.21的MAC地址,直接发往主机146.21。

(在Linux下,可以使用$route -n来查看routing table)

IP包可以进一步接力,到达更远的主机。IP包从主机出发,根据沿途路由器的routing table指导,在router间接力。IP包最终到达某个router,这个router与目标主机位于一个局域网中,可以直接建立连接层的通信。最后,IP包被送到目标主机。这样一个过程叫做routing(我们就叫IP包接力好了,路由这个词实在是混合了太多的意思)。

整个过程中,IP包不断被主机和路由封装入帧(信封)并拆开,然后借助连接层,在局域网的各个NIC之间传送帧。整个过程中,我们的IP包的内容保持完整,没有发生变化。最终的效果是一个IP包从一个主机传送到另一个主机。利用IP包,我们不需要去 *** 心底层(比如连接层)发生了什么。

在上面的过程中,我们实际上假设了,每一台主机和路由都能了解局域网内的IP地址和MAC地址的对应关系,这是实现IP包封装(encapsulation)到帧的基本条件。IP地址与MAC地址的对应是通过ARP协议传播到局域网的每个主机和路由。每一台主机或路由中都有一个ARP cache,用以存储局域网内IP地址和MAC地址如何对应。

ARP协议(ARP介于连接层和网络层之间,ARP包需要包裹在一个帧中)的工作方式如下:主机会发出一个ARP包,该ARP包中包含有自己的IP地址和MAC地址。通过ARP包,主机以广播的形式询问局域网上所有的主机和路由:我是IP地址xxxx,我的MAC地址是xxxx,有人知道199.165.146.4的MAC地址吗?拥有该IP地址的主机会回复发出请求的主机:哦,我知道,这个IP地址属于我的一个NIC,它的MAC地址是xxxxxx。由于发送ARP请求的主机采取的是广播形式,并附带有自己的IP地址和MAC地址,其他的主机和路由会同时检查自己的ARP cache,如果不符合,则更新自己的ARP cache。

这样,经过几次ARP请求之后,ARP cache会达到稳定。如果局域网上设备发生变动,ARP重复上面过程。

(在Linux下,可以使用$arp命令来查看ARP的过程。ARP协议只用于IPv4。IPv6使用Neighbor Discovery Protocol来替代ARP的功能。)

我们还有另一个假设,就是每个主机和路由上都已经有了合理的routing table。这个routint table描述了网络的拓扑(topology)结构。如果你了解自己的网络连接,可以手写自己主机的routing table。但是,一个路由器可能有多个出口,所以routing table可能会很长。更重要的是,周围连接的其他路由器可能发生变动(比如新增路由器或者路由器坏掉),我们就需要routing table能及时将交通导向其他的出口。我们需要一种更加智能的探测周围的网络拓扑结构,并自动生成routing table。

我们以北京地铁为例子。如果从机场前往朝阳门,那么可以采取2号航站楼->>三元桥->>东直门->>朝阳门。2号航站楼和朝阳门分别是出发和目的主机。而三元桥和东直门为中间的两个router。如果三元桥->>东直门段因为维修停运,我们需要更改三元桥的routing table,从而给前往朝阳门的乘客(IP包)指示:请走如下路线三元桥->>芍药居。然后依照芍药居的routing table前往朝阳门(芍药居->>东直门->>朝阳门)。

一种用来生成routing table的协议是RIP(Routing Information Protocol)。它通过距离来决定routing table,所以属于distance-vector protocol。对于RIP来说,所谓的距离是从出发地到目的地途径的路由器数目(hop number)。比如上面从机场到朝阳门,按照2号航站楼->>三元桥->>东直门->>朝阳门路线,途径两个路由器,距离为2。我们最初可以手动生成三元桥的routing table。随后,根据RIP协议,三元桥向周围的路由器和主机广播自己前往各个IP的距离(比如到机场=0,团结湖=0,国贸=1,望京西=1,建国门=2)。收到RIP包的路由器和主机根据RIP包和自己到发送RIP包的主机的距离,算出自己前往各个IP的距离。东直门与三元桥的距离为1。东直门收到三元桥的RIP包(到机场的距离为0),那么东直门途径三元桥前往机场的距离为1+0=1。如果东直门自己的RIP记录都比这个远(比如东直门->>芍药居->>三元桥->>机场 = 2)。那么东直门更改自己的routing table:前往机场的交通都发往三元桥而不是芍药居。如果东直门自身的RIP记录并不差,那么东直门保持routing table不变。上述过程在各个点不断重复RIP广播/计算距离/更新routing table的过程,最终所有的主机和路由器都能生成最合理的路径(merge)。

(RIP的基本逻辑是:如果A距离B为6,而我距离A为1,那么我途径A到B的距离为7)

RIP出于技术上的原因(looping hops),认为距离超过15的IP不可到达。所以RIP更多用于互联网的一部分(比如整个中国电信的网络)。这样一个互联网的部分往往属于同一个ISP或者有同一个管理机构,所以叫做自治系统(AS,autonomous system)。自治系统内部的主机和路由根据通向外部的边界路由器来和其它的自治系统通信。各个边界路由器之间通过BGP(Border Gateway Protocol)来生成自己前往其它AS的routing table,而自治系统内部则参照边界路由器,使用RIP来决定routing table。BGP的基本工作过程与RIP类似,但在考虑距离的同时,也权衡比如政策、连接性能等其他因素,再决定交通的走向(routing table)。

我们一开始讲述了IP包根据routing table进行接力的过程。为了顺利实现接力,我们又进一步深入到ARP和RIP/BGP。这三个协议都协助了IP传输。ARP让每台电脑和路由器知道自己局域网内IP地址和MAC地址的对应关系,从而顺利实现IP包到帧的封装。RIP协议可以生成自治系统内部合理的routing table。BGP协议可以生成自治系统外部的routing table。

在整个过程中,我们都将注意力放在了IP包大的传输过程中,而故意忽略一些细节。 而上面的IP接力过程适用于IPv6。

【TCP/IP详解】系列教程

互联网协议入门 1

互联网协议入门 2

TCP-IP协议详解(1)网络协议概观

TCP-IP协议详解(2) 以太网与WiFi协议

TCP-IP协议详解(3) IP/ARP/RIP/BGP协议

TCP-IP协议详解(4)IPv4与IPv6地址

TCP-IP协议详解(5)IP协议详解

TCP-IP协议详解(6) ICMP协议

TCP-IP协议详解(7) UDP协议

TCP-IP协议详解(8) TCP协议与流通信

TCP-IP协议详解(9) TCP连接

TCP-IP协议详解(10) TCP滑窗管理

TCP-IP协议详解(11) TCP重传

TCP-IP协议详解(12) TCP堵塞控制

TCP-IP协议详解(13) DNS协议

TCP-IP协议详解(14) CIDR与NAT

TCP-IP协议详解(15) HTTP协议概览

图解TCP-IP协议


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/yw/7423227.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-05
下一篇 2023-04-05

发表评论

登录后才能评论

评论列表(0条)

保存