如何实现gpio口模式的配置?

如何实现gpio口模式的配置?,第1张

一、 STM32的输入输出管脚有下面8种(4输入 2输出 2复用输出)可能的配置:\x0d\x0a\x0d\x0a① 浮空输入_IN_FLOATING\x0d\x0a\x0d\x0a② 带上拉输入_IPU \x0d\x0a\x0d\x0a③ 带下拉输入_IPD \x0d\x0a\x0d\x0a④ 模拟输入_AIN\x0d\x0a\x0d\x0a⑤ 开漏输出_OUT_OD \x0d\x0a\x0d\x0a⑥ 推挽输出_OUT_PP\x0d\x0a\x0d\x0a⑦ 复用功能的推挽输出_AF_PP\x0d\x0a\x0d\x0a⑧ 复用功能的开漏输出_AF_OD\x0d\x0a\x0d\x0a1.1 I/O口的输出模式下,有3种输出速度可选(2MHz、10MHz和50MHz),这个速度是指I/O口驱动电路的响应速度而不是输出信号的速度,输出信号的速度与程序有关(芯片内部在I/O口 的输出部分安排了多个响应速度不同的输出驱动电路,用户可以根据自己的需要选择合适的驱动电路)。通过选择速度来选择不同的输出驱动模块,达到最佳的噪声控制和降低功耗的目的。高频的驱动电路,噪声也高,当不需要高的输出频率时,请选用低频驱动电路,这样非常有利于提高系统的EMI性能。当然如果要输出较高频率的信号,但却选用了较低频率的驱动模块,很可能会得到失真的输出信号。\x0d\x0a\x0d\x0a输出速度又称输出驱动电路的响应速度,可理解为:输出驱动电路的带宽,即一个驱动电路可以不失真地通过信号的最大频率。\x0d\x0a\x0d\x0a如果一个信号的频率超过了驱动电路的响应速度,就有可能信号失真。如果信号频率为10MHz,而你配置了2MHz的带宽,则10MHz的方波很可能就变成了正弦波。就好比是公路的设计时速,汽车速度低于设计时速时,可以平稳地运行,如果超过设计时速就会颠簸,甚至翻车。\x0d\x0a\x0d\x0a关键是: GPIO的引脚速度跟应用相匹配,速度配置越高,噪声越大,功耗越大。\x0d\x0a\x0d\x0a带宽速度高的驱动器耗电大、噪声也大,带宽低的驱动器耗电小、噪声也小。使用合适的驱动器可以降低功耗和噪声。\x0d\x0aGPIO的引脚速度跟应用匹配(推荐10倍以上)。比如:\x0d\x0a\x0d\x0a1.1.1 对于串口,假如最大波特率只需115.2k,那么用2M的GPIO的引脚速度就够了,既省电也噪声小。\x0d\x0a\x0d\x0a1.1.2 对于I2C接口,假如使用400k波特率,若想把余量留大些,那么用2M的GPIO的引脚速度或许不够,这时可以选用10M的GPIO引脚速度。\x0d\x0a\x0d\x0a1.1.3 对于SPI接口,假如使用18M或9M波特率,用10M的GPIO的引脚速度显然不够了,需要选用50M的GPIO的引脚速度。\x0d\x0a\x0d\x0a 1.2 GPIO口设为输入时,输出驱动电路与端口是断开,所以输出速度配置无意义。\x0d\x0a\x0d\x0a 1.3 在复位期间和刚复位后,复用功能未开启,I/O端口被配置成浮空输入模式。\x0d\x0a\x0d\x0a 1.4 所有端口都有外部中断能力。为了使用外部中断线,端口必须配置成输入模式。\x0d\x0a\x0d\x0a 1.5 GPIO口的配置具有上锁功能,当配置好GPIO口后,可以通过程序锁住配置组合,直到下次芯片复位才能解锁。\x0d\x0a\x0d\x0a二、GPIO的翻转速度指:输入/输出寄存器的0 ,1 值反映到外部引脚(APB2上)高低电平的速度.手册上指出GPIO最大翻转速度可达18MHz。通过简单的程序测试,用示波器观察到的翻转时间是综合的时间,包括取指令的时间、指令执行的时间、指令执行后信号传递到寄存器的时间(这其中可能经过很多环节,比如AHB、APB、总线仲裁等),最后才是信号从寄存器传输到引脚所经历的时间。如有上拉电阻,其阻值越大,RC延时越大,即逻辑电平转换的速度越慢,功耗越大。 \x0d\x0a\x0d\x0a三、在STM32中如何配置片内外设使用的IO端口\x0d\x0a\x0d\x0a首先,一个外设经过 ①配置输入的时钟和 ②初始化后即被激活(开启);③如果使用该外设的输入输出管脚,则需要配置相应的GPIO端口(否则该外设对应的输入输出管脚可以做普通GPIO管脚使用);④再对外设进行详细配置。\x0d\x0a\x0d\x0a对应到外设的输入输出功能有下述三种情况:\x0d\x0a\x0d\x0a① 外设对应的管脚为输出:需要根据外围电路的配置选择对应的管脚为复用功能的推挽输出或复用功能的开漏输出。\x0d\x0a② 外设对应的管脚为输入:则根据外围电路的配置可以选择浮空输入、带上拉输入或带下拉输入。\x0d\x0a③ ADC对应的管脚:配置管脚为模拟输入。\x0d\x0a\x0d\x0a如果把端口配置成复用输出功能,则引脚和输出寄存器断开,并和片上外设的输出信号连接。将管脚配置成复用输出功能后,如果外设没有被激活,那么它的输出将不确定。\x0d\x0a\x0d\x0a四、 通用IO端口(GPIO)初始化\x0d\x0a\x0d\x0a 4.1 GPIO初始化\x0d\x0a\x0d\x0a41.1 RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA | B | C, ENABLE):使能APB2总线外设时钟;\x0d\x0a\x0d\x0a41.2 RCC_ APB2PeriphResetCmd (RCC_APB2Periph_GPIOA | B | C, DISABLE):释放GPIO复位。\x0d\x0a\x0d\x0a 4.2 置各个PIN端口(模拟输入_AIN、输入浮空_IN_FLOATING、输入上拉_IPU、输入下拉_IPD、开漏输出_OUT_OD、推挽式输出_OUT_PP、推挽式复用输出_AF_PP、开漏复用输出_AF_OD)。\x0d\x0a\x0d\x0a 4.3GPIO初始化完成。\x0d\x0a\x0d\x0a五、 的GPIO *** 作函数\x0d\x0a\x0d\x0auint8_t GPIO_ReadInputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)//读GPIO某一位的输入\x0d\x0a\x0d\x0auint16_t GPIO_ReadInputData(GPIO_TypeDef* GPIOx)//读GPIO的输入\x0d\x0a\x0d\x0auint8_t GPIO_ReadOutputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)//读GPIO某一位的输出\x0d\x0a\x0d\x0auint16_t GPIO_ReadOutputData(GPIO_TypeDef* GPIOx)//读GPIO的输出\x0d\x0a\x0d\x0avoid GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)//将GPIO的某个位置位\x0d\x0a\x0d\x0avoid GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)//将GPIO的某个位复位\x0d\x0a\x0d\x0avoid GPIO_WriteBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin, BitAction BitVal)//写GPIO的某个位\x0d\x0a\x0d\x0avoid GPIO_Write(GPIO_TypeDef* GPIOx, uint16_t PortVal)//写GPIO\x0d\x0a\x0d\x0a 六、管脚的复用功能 重映射\x0d\x0a\x0d\x0a1、复用功能:内置外设是与I/O口共用引出管脚(不同的功能对应同一管脚)\x0d\x0a\x0d\x0aSTM32 所有内置外设的外部引脚都是与标准GPIO引脚复用的,如果有多个复用功能模块对应同一个引脚,只能使能其中之一,其它模块保持非使能状态。\x0d\x0a\x0d\x0a2、重映射功能:复用功能的引出脚可以通过重映射,从不同的I/O管脚引出,即复用功 能的引出脚位是可通过程序改变到其他的引脚上!\x0d\x0a\x0d\x0a直接好处:PCB电路板的设计人员可以在需要的情况下,不必把某些信号在板上绕一大圈完成联接,方便了PCB的设计同时潜在地减少了信号的交叉干扰。\x0d\x0a\x0d\x0a如:USART1: 0: 没有重映像(TX/PA9,RX/PA10); 1: 重映像(TX/PB6,RX/PB7)。\x0d\x0a\x0d\x0a(参考AFIO_MAPR寄存器介绍)[0,1为一寄存器的bit值]\x0d\x0a\x0d\x0a【注】 下述复用功能的引出脚具有重映射功能:\x0d\x0a\x0d\x0a - 晶体振荡器的引脚在不接晶体时,可以作为普通I/O口\x0d\x0a\x0d\x0a - CAN模块; - JTAG调试接口;- 大部分定时器的引出接口; - 大部分USART引出接口\x0d\x0a\x0d\x0a - I2C1的引出接口; - SPI1的引出接口;\x0d\x0a\x0d\x0a举例:对于STM32F103VBT6,47引脚为PB10,它的复用功能是I2C2_SCL和 USART3_TX,表示在上电之后它的默认功能为PB10,而I2C2的SCL和USART3的TX为它的复用功能;另外在TIM2的引脚重映射后,TIM2_CH3也成为这个引脚的复用功能。\x0d\x0a\x0d\x0a(1)要使用STM32F103VBT6的47、48脚的USART3功能,则需要配置47脚为复用推挽输出或复用开漏输出,配置48脚为某种输入模式,同时使能USART3并保持I2C2的非使能状态。\x0d\x0a\x0d\x0a(2)使用STM32F103VBT6的47脚作为TIM2_CH3,则需要对TIM2进行重映射,然后再按复用功能的方式配置对应引脚。

STM32F1的IO口模式有很多种,需要按照设计进行配置,IO的 *** 作还是比较简单的

STM32的内部IO口结构为:

寄存器的配置说明:

寄存器的复位值为:0X4444 4444(0100 0100 0100 0100 0100 0100 0100 0100),

即IO口默认为浮空输入,

STM32 的 CRL 控制着每组 IO 端口(A~G)的低 8 位的模式。

每个 IO 端口的位占用 CRL 的 4 个位,高两位为 CNF,低两位为 MODE。这里我们可以记住几个常用的配置,比如 0X0 表示模拟输入模式(ADC 用)、0X3 表示推挽输出模式(做输出口用,50M 速率)、0X8 表示上/下拉输入模式(做输入口用)、0XB 表示复用输出(使用 IO 口的第二功能,50M 速率)。

GPIO 相关的函数和定义分布在固件库文件stm32f10x_gpio.c 和头文件stm32f10x_gpio.h 文件中。

  void GPIO_Init(GPIO_TypeDef* GPIOx, GPIO_InitTypeDef* GPIO_InitStruct); //初始化

 这个函数有两个参数,第一个参数是用来指定 GPIO,取值范围为 GPIOA~GPIOG。

  GPIO口的结构体为:

    typedef struct

{

  uint16_t GPIO_Pin            /*!<Specifies the GPIO pins to be configured.

                                              This parameter can be any value of @ref GPIO_pins_define */

  GPIOSpeed_TypeDef GPIO_Speed  /*!<Specifies the speed for the selected pins.

                                                    This parameter can be a value of @ref GPIOSpeed_TypeDef */

  GPIOMode_TypeDef GPIO_Mode    /*!<Specifies the operating mode for the selected pins.

                                                    This parameter can be a value of @ref GPIOMode_TypeDef */

}GPIO_InitTypeDef/ /端口,速度,模式

初始化过程:

GPIO_InitTypeDef GPIO_InitStructure

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 //LED0-->PB.5 端口配置

GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP //推挽输出

GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz//速度50MHz

GPIO_Init(GPIOB, &GPIO_InitStructure)//根据设定参数配置 GPIO

关于GPIO口的几种 *** 作说明:

1、uint8_t GPIO_ReadInputDataBit(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)

比如我要读 GPIOA.5 的电平状态,那么方法是:

GPIO_ReadInputDataBit(GPIOA, GPIO_Pin_5) //返回值为1或0

2、void GPIO_Write(GPIO_TypeDef* GPIOx, uint16_t PortVal)

//BSRR 寄存器是端口位设置/清除寄存器

该函数一般用来往一次性一个 GPIO 的多个端口设值。

如GPIOA->BSRR=1<<1//GPIOA的第一个端口设置为1

3、void GPIO_SetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin)

      void GPIO_ResetBits(GPIO_TypeDef* GPIOx, uint16_t GPIO_Pin) ;

//BRR 寄存器是端口位清除寄存器。

如: GPIO_SetBits(GPIOB, GPIO_Pin_5) //输出1

        GPIO_ResetBits (GPIOB, GPIO_Pin_5) //输出0

所以最后的程序为:

H文件:定义

#ifndef __LED_H

#define __LED_H

#include "common.h"

#include "stm32f10x.h"

#define ON  0

#define OFF 1

//宏定义

#define LED0(a) if (a) \

GPIO_SetBits(GPIOG,GPIO_Pin_13)\

else \

GPIO_ResetBits(GPIOG,GPIO_Pin_13)

#define LED1(a) if (a) \

GPIO_SetBits(GPIOG,GPIO_Pin_14)\

else \

GPIO_ResetBits(GPIOG,GPIO_Pin_14)

#define LED2(a) if (a) \

GPIO_SetBits(GPIOG,GPIO_Pin_15)\

else \

GPIO_ResetBits(GPIOG,GPIO_Pin_15)

void LED_Init(void)//初始化

#endif

C文件:初始化 *** 作

#include "led.h" 

void LED_Init(void)

{   

  GPIO_InitTypeDef  GPIO_InitStructure//IO口结构体

  RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOG, ENABLE)//IO口时钟使能

  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15//IO口管脚

  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP//输出模式

  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz//输出速度

  GPIO_Init(GPIOG, &GPIO_InitStructure)//初始化

  GPIO_SetBits(GPIOG,GPIO_Pin_13 | GPIO_Pin_14 | GPIO_Pin_15)//默认值

}

主函数main:执行 *** 作

#include "led.h"

#include "common.h"

int main(void)

{

delay_init()//延时函数初始化,其他C文件中定义

 LED_Init()     //初始化

while(1)

{

LED0(0)    // *** 作

delay_ms(500)

LED0(1)

delay_ms(500)

 }

}

一、gpio用途

General Purpose Input Output (通用输入/输出)简称为GPIO,或总线扩展器,人们利用工业标准I2C、SMBus或SPI接口简化了I/O口的扩展。当微控制器或芯片组没有足够的I/O端口,或当系统需要采用远端串行通信或控制时,GPIO产品能够提供额外的控制和监视功能。

每个GPIO端口可通过软件分别配置成输入或输出。Maxim的GPIO产品线包括8端口至28端口的GPIO,提供推挽式输出或漏极开路输出。提供微型3mm x 3mm QFN封装。

不同系统间的GPIO的确切作用不同。通用常有下面几种:

1.输出值可写(高=1,低=0)。一些芯片也可以选择驱动这些值的方式,以便支持“线-或”或类似方案(开漏信号线)。

2.输入值可读(1,0)。一些芯片支持输出管脚回读,这在线或的情况下非常有用(以支持双向信号线)。GPIO控制器可能具有一个输入防故障/防反跳逻辑,有时还会有软件控制。

3.输入经常被用作中断信号,通常是边沿触发,但也有可能是电平触发。这些中断可以配置为系统唤醒事件,从而将系统从低功耗模式唤醒。

4.一个GPIO经常被配置为输入/输出双向,根据不同的产品单板需求,但也存在单向的情况。

5.大多是GPIO可以在获取到spinlock自旋锁时访问,但那些通过串行总线访问的通常不能如此 *** 作(休眠的原因)。一些系统中会同时存在这两种形式的GPIO。

6.在一个给定单板上,每个GPIO用于一个特定的目的,如监控MMC/SD卡的插入/移除,检查卡写保护状态,驱动LED,配置发送器,串行总线位拆,触发一个硬件看门狗,触发一个开关之类的。

二、GPIO使用方法

 

要使用GPIO,系统首先要分配一个GPIO,使用gpio_request() 为系统分配一个GPIO。

接下来要做的一件事是标示GPIO的方向,通常在使用GPIO建立一个platform_device时(位于单板的setup代码中)。

返回0标示成功,或是一个负的errno错误码。它应该被检查,因为get/set调用没有错误返回,且可能会有错误配置。你通常应该在线程上下文中使用这些调用。虽然如此,对于spinlock-safe的GPIO,在tasking使能之前使用也是可以的,作为一个早期的单板建立。

对于输出GPIO,value参数提供了初始输出值。这有助于避免系统启动过程中的信号干扰。

为了与GPIO早期的接口兼容,设置一个GPIO的方向,隐性要求申请GPIO。这个兼容性从可选的gpiolib架构中移除了。

为了与GPIO早期的接口兼容,设置一个GPIO的方向,隐性要求申请GPIO。这个兼容性从可选的gpiolib架构中移除了。

如果GPIO号码无效或是指定的GPIO不能使用对应模式 *** 作的话,设置方向会失败。依靠boot固件设置好GPIO的方向通常不是一个好主意,因为boot的功能可能没有通过验证(除了boot linux)。(类似的,单板setup代码可能需要将管脚复用为一个GPIO,和配置为合适的上拉/下拉)


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/yw/7970064.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-12
下一篇 2023-04-12

发表评论

登录后才能评论

评论列表(0条)

保存