北航python作业二维欧几里得度量

北航python作业二维欧几里得度量,第1张

欧几里得距离又称欧氏距离,是在欧几里得空间中两点之间的距离。其公式为:

d(x,y) = sqrt((x1-y1)^2 + (x2-y2)^2)

其中x和y都表示二维平面上的坐标点,即x=(x1,x2)和y=(y1,y2)。代入公式即可求出它们之间的欧几里得距离。

在Python中,可以使用math库中的sqrt函数来进行平方根的计算,进而实现欧几里得度量。下面是一个示例代码:

```

import math

# 定义两个二维平面上的点

x = (3,4)

y = (0,0)

# 计算两个点之间的距离

distance = math.sqrt((x[0]-y[0])**2 + (x[1]-y[1])**2)

print("x和y之间的欧几里得距离为:", distance)

```

运行结果为:x和y之间的欧几里得距离为: 5.0

在这个示例中,我们先定义了两个二维平面上的点x和y,并且通过使用欧几里得距离的公式计算它们之间的距离,最终打印出结果。

欧几里得(Euclid)算法是用来求两个整数的最大公约数。

欧几里得算法指出,对于整数m和n,如果m可以被n整除,那么它们的最大公因数为n。然而,如果m不可以被n整除,那么结果就是n与(m除以n的余数)的最大公因数。

本节内容中可能用到的符号说明如下:

质数和合数: 质数是指除了平凡约数1和自身之外,没有其他约数的大于1的正整数。大于1的正整数中不是素数的则为合数。如 7、11 是质数,而 4、9 是合数。在 RSA 算法中主要用到了质数相关性质,质数可能是上帝留给人类的一把钥匙,许多数学定理和猜想都跟质数有关。

[定理1] 除法定理: 对任意整数 a 和 任意正整数 n,存在唯一的整数 q 和 r,满足 。其中, 称为除法的商,而称为除法的余数。

整除: 在除法定理中,当余数时,表示 a 能被 n 整除,或者说 a 是 n 的倍数,用符号表示。

约数和倍数 : 对于整数 d 和 a,如果 ,且 ,则我们说 d 是 a 的约数,a 是 d 的倍数。

公约数: 对于整数 d,a,b,如果 d 是 a 的约数且 d 也是 b 的约数,则 d 是 a 和 b 的公约数。如 30 的约数有 1,2,3,5,6,10,15,30,而 24 的约数有 1,2,3,4,6,8,12,24,则 30 和 24 的公约数有 1,2,3,6。其中 1 是任意两个整数的公约数。

公约数的性质:

最大公约数: 两个整数最大的公约数称为最大公约数,用来表示,如 30 和 24 的最大公约数是 6。 有一些显而易见的性质:

[定理2] 最大公约数定理: 如果 a 和 b 是不为0的整数,则是 a 和 b 的线性组合集合中的最小正元素。

由定理2可以得到一个推论:

[推论1] 对任意整数 a 和 b,如果且 ,则 。

互质数: 如果两个整数 a 和 b 只有公因数 1,即 ,则我们就称这两个数是互质数(coprime)。比如 4 和 9 是互质数,但是 15 和 25 不是互质数。

互质数的性质:

欧几里得算法分为朴素欧几里得算法和扩展欧几里得算法,朴素法用于求两个数的最大公约数,而扩展的欧几里得算法则有更多广泛应用,如后面要提到的求一个数对特定模数的模逆元素等。

求两个非负整数的最大公约数最有名的是 辗转相除法,最早出现在伟大的数学家欧几里得在他的经典巨作《几何原本》中。辗转相除法算法求两个非负整数的最大公约数描述如下:

例如, ,在求解过程中,较大的数缩小,持续进行同样的计算可以不断缩小这两个数直至其中一个变成零。

欧几里得算法的python实现如下:

扩展欧几里得算法在 RSA 算法中求模反元素有很重要的应用,定义如下:

定义: 对于不全为 0 的非负整数 ,则必然存在整数对 ,使得

例如,a 为 3,b 为 8,则 。那么,必然存在整数对 ,满足 。简单计算可以得到满足要求。

扩展欧几里得算法的python实现如下:

同余: 对于正整数 n 和 整数 a,b,如果满足,即 a-b 是 n 的倍数,则我们称 a 和 b 对模 n 同余,记号如下: 例如,因为 ,于是有 。

对于正整数 n,整数 ,如果 则我们可以得到如下性质:

譬如,因为 ,则可以推出 。

另外,若 p 和 q 互质,且 ,则可推出:

此外,模的四则运算还有如下一些性质,证明也比较简单,略去。

模逆元素: 对整数 a 和正整数 n,a 对模数 n 的模逆元素是指满足以下条件的整数 b。 a 对 模数 n 的 模逆元素不一定存在,a 对 模数 n 的模逆元素存在的充分必要条件是 a 和 n 互质,这个在后面我们会有证明。若模逆元素存在,也不是唯一的。例如 a=3,n=4,则 a 对模数 n 的模逆元素为 7 + 4k,即 7,11,15,...都是整数 3 对模数 4 的模逆元素。如果 a 和 n 不互质,如 a = 2,n = 4,则不存在模逆元素。

[推论2] 模逆元素存在的充分必要条件是整数 a 和 模数 n 互质。

[定理3] 唯一质数分解定理: 任何一个大于1的正整数 n 都可以 唯一分解 为一组质数的乘积,其中都是自然数(包括0)。比如 6000 可以唯一分解为。

由质数唯一分解定理可以得到一个推论: 质数有无穷多个

[定理4] 中国剩余定理(Chinese remainder theorem,CRT) ,最早见于《孙子算经》(中国南北朝数学著作,公元420-589年),叫物不知数问题,也叫韩信点兵问题。

翻译过来就是已知一个一元线性同余方程组求 x 的解:

宋朝著名数学家秦九韶在他的著作中给出了物不知数问题的解法,明朝的数学家程大位甚至编了一个《孙子歌诀》:

意思就是:将除以 3 的余数 2 乘以 70,将除以 5 的余数 3 乘以 21,将除以 7 的余数 2 乘以 15,最终将这三个数相加得到 。再将 233 除以 3,5,7 的最小公倍数 105 得到的余数 ,即为符合要求的最小正整数,实际上, 都符合要求。

物不知数问题解法本质

求解通项公式

中国剩余定理相当于给出了以下的一元线性同余方程组的有解的判定条件,并用构造法给出了解的具体形式。

模数两两互质 ,则对任意的整数: ,方程组有解,且解可以由如下构造方法得到:

并设是除以外的其他个模数的乘积。

中国剩余定理通项公式证明


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/yw/7973091.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-04-12
下一篇 2023-04-12

发表评论

登录后才能评论

评论列表(0条)

保存