拉曼效应是一种什么现象?

拉曼效应是一种什么现象?,第1张

拉曼效应简单地讲是这样一种现象:假设有一束频率为u的光线入射到某种介质(可以是固体、液体或气体)中,除一部分被吸收外,其余的光线将被该介质的分子散射,散射线有两种情况:其一是散射后频率保持不变,仍为v,因而光线的颜色也保持不变,这种过程通常称为瑞利散射;其二是散射线的频率变化为u,颜色也有一定的改变,这就是所谓的拉曼散射。

为什么在拉曼之前没人能发现这个现象?这是因为拉曼散射是一种相当微弱的效应,要观察到它的确非常困难。现在通常使用较强的激光光源,用带有高倍聚光镜的分光计,还有精密的检波器才能进行拉曼光谱的研究。目前,一套拉曼光谱学的实验设备至少要价值上万美元。令人惊叹不已的是,拉曼只利用了一些十分简陋的仪器,便作出了重大的科学发现。例如他的光源是自然光源(太阳光),当然后来也用过简单的水银灯加聚光透镜作光源,小型老式分光计、滤色镜(或称为滤波器),没有专门的检波器,只能用人的肉眼作检波器,这些全部加起来价值不过几十美元。这一次,拉曼甚至将这个发现的消息通知了加尔各答的一家报社,该报社立刻以新闻方式将此消息公布于众。

此后,拉曼又利用具有较高分辨率的石英棱镜摄谱仪把散色光谱拍摄下来,由这些照片可以清楚地看到散射线频率(或波长)的变化(包括频率的减小和增大两种情况),并可以测量这种微弱的谱线位移,测量表明:这些位移符合分子的振动频率。拉曼又认识到,在发生此效应的过程中,有时入射光子的部分能量被用于激发分子振动能向高能态跃迁,结果使得散色光子的能量比入射时有所减少;有时又会发生相反的情况,分子从高能态向低能态跃迁,把能量传给入射光,使散色线能量有所增加。这便是效应发生的简单机理。

1928年3月16日,在班加罗尔举行的南印度科学协会成立大会上,拉曼作了题为“一种新的辐射”的演讲,详细地报告了他的发现及其理论解释。报告中,他除了描述新辐射的主要特点之外,也采用量子理论给予这个效应以恰当的解释。他指出,克拉姆斯—海森堡色散理论可以解释这种现象:入射光量子的一部分被散射物质的分子吸收了,其余部分则被散射,散射可以分为正常和反常两部分,正常散射是端利散射,反常散射即是新发现的辐射之一,其机理与康普顿效应相似;新辐射中能量增大的部分,是因为一开始散射物质被吸收的那些能量有时又会再传给入射的光量子,使其在散射后能量增加,从而频率增大(波长变短)。

这个报告的全文于当月底发表在《印度物理学杂志》1928年第2卷上,并公布了液体苯的散射光谱照片。由于该刊物当时创办伊始,发行量很小,影响不大,所以拉曼将此文打印了2000份,分发给世界各地的领衔物理学家和若干重要研究机构。

拉曼的新发现很快传遍了全世界,引起了国际科学界的广泛关注和高度评价。英国皇家学会将它称为“20年代实验物理学中最卓越的三、四个发现之一。”美国光谱学权威伍德写道:“拉曼教授辉煌而惊人的发现,为分子结构研究开辟了一个全新的领域……显然,这个非常美妙的发现是拉曼长期研究光散射的结果,它是光量子理论最有力的证据之一”。

众所周知,20世纪初,随着普朗克光量子假设的出现和爱因斯坦对此概念的进一步阐述,200多年前牛顿关于光的粒子性学说又开始复活。1924年康普顿效应发现后,海森堡曾于1925年预言,在可见光中可能也会有如此类似的效应存在。而拉曼在这个预言之先就已开始光散射的研究,并最终得到确凿的结论。

拉曼本人一开始只简单地把这个发现称为:“一种新辐射”,此后英国物理学家普林塞姆写了一篇介绍文章,提议将这个发现称为“拉曼效应”,而把效应产生的谱线叫作“拉曼光谱”,这一命名很快被各国科学家所接受。

拉曼效应为光量子理论提供了新的证据。它在研究分子结构和化学成分方面的重大作用也很快被人们认识到了。在效应发现之前,分子振动能谱和转动能谱的测量,是采用红外区的吸收来进行的,这种测量相当困难,当时全世界只有几个装备精良的实验室能开展此类研究。大多数光谱学家亟需一种更便利的方法来开展这一领域的工作,拉曼效应的发现正好满足了这个需要。利用拉曼光谱,可以把红外区的分子能谱移到可见光区进行观测,从而使一般实验室都能问津分子能谱的研究。

拉曼效应的发现

1922年9月,拉曼的《光的分子衍射》一书由加尔各答大学出版社出版。该书集中介绍了这一时期的研究成果,最后提到,如果散射过程能被看作是光量子和散射分子之间的碰撞,它将有与经典电磁理论所预期的不同的结果。这一想法的提出,比康普顿效应的发现(1923年)早了一年。正如拉曼自己所说,“这个课题的意义远远超出了我的工作的特定目的,它为研究打开了非常广阔的领域。”

随后,拉曼和他的助手于1923年发现了一种荧光效应。当时他们用太阳光作光源,观察它穿过蒸馏水的散射线。他们发现,若在入射线的光路中放置一个紫色滤色镜,则射出的散射线退极化现象明显增加。然后他们进一步观察可见光被多种物质、特别是一些液体散射的情况,结果观察到一种较通常的散射线波长有微弱变化的第二次射线。他们当时将此种微弱射线归结为某种“荧光”现象。

在此期间,康普顿发现X射线散射新效应的论文发表了。拉曼在于当年游学美国时,有机会与康普顿当面切磋了他的新发现。这对拉曼拓宽思路,引发某种联想是有很大帮助的。

拉曼与他的助手对“荧光”现象不敢轻易下什么结论,这是因为这种二次射线太微弱了,要对它进行任何深入的研究,首先得把它提纯或分离出来。经过长时间的努力,他们逐渐找到了把这种“荧光”效应分离出来的实验手段;他们用实验室屋顶上的定日镜把太阳光送进实验室,经汇聚后入射到实验样品(液体或固体材料)上,在入射和出射光路中分别放置一对互补滤色镜(他们常用的是一对蓝一紫和绿色滤色镜)。结果发现,穿过样品的蓝色散射光,经过绿色滤色镜后并未完全消失,还能观察到一点相当暗淡的光线。按照实验设置的特性,可以认定这种射线的波长应不同于入射的蓝光,但可以把它解释为由于样品中含有某些杂质,从而激发出的荧光。

这种解释后来经过大量实验被否定了。因为:(1)该现象在80多种不同的、经过精心提纯的液体样品中无一例外地都存在着;这些样品不会都含有杂质;(2)特别是在丙三醇(甘油)样品的实验中,不但这种现象较明显,而且最后的出射线已被极化,成了完全不同于自然光的偏振光。这就说明原来以为是荧光的射线实际上是一种特殊的二次辐射,并且这种效应是一种普遍的效应。拉曼和助手们将此现象与克拉姆斯—海森堡的射散理论相联系,并将它命名为“分子散射”。经过5年多时间的探索研究,在1928年2月,取得了突破性进展。而且只用了几天,应了那句“水到渠成”的老话。1928年2月16日,拉曼用电报向《自然》杂志发出了第一个报告,简要地描述了这项新发现及其实验和理论解释。此后的两篇论文都是用电报的形式发往《自然》杂志的。后来的事实证明他的这番苦心不无道理。

拉曼和他的助手一起抓紧改进实验装置,最后用大孔径聚光器、汞弧灯及滤光片获得了较强的单色光。1928年2月28日下午,当他们用改进了的装置观测液体散射光的光谱时,清楚地观察到了汞弧光中没有的若干谱线,在拍摄的光谱照片上还证实了散射光不仅有红移,而且还有紫移。经过长期深入的研究,拉曼效应最终被发现了。

更多图片(3张)

拉曼效应(Ramanscattering),也称拉曼散射,1928年由印度物理学家拉曼发现,指光波在被散射后频率发生变化的现象。1930年诺贝尔物理学奖授予印度加尔各答大学的拉曼(SirChandrasekhara Venkata Raman,1888——1970),以表彰他研究了光的散射和发现了以他的名字命名的定律。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/zaji/5795615.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-01-31
下一篇 2023-01-31

发表评论

登录后才能评论

评论列表(0条)

保存