强相互作用包括哪些

强相互作用包括哪些,第1张

相互作用是作用于强子之间的力,是所知四种宇宙间基本作用力最强的,也是作用距离最短的(大约在 10^(-15)~10^(-10) m 范围内).核子间的核力就是强相互作用,它抵抗了质子之间的强大的电磁力,维持了原子核的稳定.现在物理学家认为强相互作用的产生与夸克、胶子有关.它将质子和中子中的夸克束缚在一起,并将原子中的质子和中子束缚在一起.一般认为,称为胶子的另一种自旋为1的粒子携带强作用力.它只能与自身以及与夸克相互作用.强核力具有一种称为禁闭的古怪性质:它总是把粒子束缚成不带颜色的结合体.由于夸克有颜色(红、绿或蓝),人们不能得到单独的夸克.反之,一个红夸克必须用一串胶子和一个绿夸克以及一个蓝夸克联结在一起(红+绿+蓝=白).这样的三胞胎构成了质子或中子.其他的可能性是由一个夸克和一个反夸克组成的对(红+反红,或绿+反绿,或蓝+反蓝=白).这样的结合构成称为介子的粒子.介子是不稳定的,因为夸克和反夸克会互相湮灭而产生电子和其他粒子.类似地,由于胶子也有颜色,色禁闭使得人们不可能得到单独的胶子.相反地,人们所能得到的胶子的团,其迭加起来的颜色必须是白的.这样的团形成了称为胶球的不稳定粒子.强相互作用的理论是量子色动力学(QCD).带电粒子之间有电磁相互作用,带色荷的粒子之间有强相互作用.两个中性原子之间没有相互作用,靠近电子云重叠出现作用力称为范德瓦尔斯力,出现强相互作用强子之间的力程都很短.

强相互作用(strong interaction)是自然界四种基本相互作用中最强的一种。最早研究的强相互作用是核子(质子或中子)之间的核力,它是使核子结合成原子核的相互作用。自1947年发现与核子作用的π介子以后,实验中陆续发现了几百种有强相互作用的粒子,这些粒子统称为强子。

强相互作用力是作用于强子之间的力,是所知四种宇宙间基本作用力(强相互作用力、弱相互作用力、电磁相互作用力、引力相互作用力)最强的,强相互作用克服了电磁力产生的强大排斥力,把质子和中子紧紧粘合为原子核。

规范理论

解释强相互作用的规范理论是量子色动力学,由组成强作用粒子(强子)的相互作用统一地描述强子结构和强子之间作用。

按照夸克模型,与量子电动力学中传递电磁作用的光子相对应,这里有自旋为1的规范粒子(胶子),可被夸克所吸收或发射,并传递夸克之间的色作用力。这种力把夸克束缚在强子中,是两个强子之间的通常的强作用力的来源。

研究表明,规范场的自作用能够产生相反的效果,使得在真空中的色荷吸引真空中产生的规范粒子,在其周围聚集相同的色荷,造成反屏蔽的效应。这种情况下量子色动力学有渐近自由的性质,即随着时空距离的变小相互作用变弱。按照不确定度关系,小的时空距离相应于大的能量动量。

量子色动力学中夸克的质量不大,胶子的质量为零,它们应当很容易产生,因此必须解释为什么没有在实验中观察到这些粒子。

弱相互作用是基本粒子之间一种特殊作用,它和强相互作用,电磁作用和万有引力作用并成为四种基本作用力。由于弱相互作用比强相互作用和电磁作用的强度都弱,故有此名,其作用范围比强相互作用还要小。

有两种弱相互作用,一种是有轻子(电子e,中微子ν,μ子以及它们的反粒子)参与的反应,如β衰变,μ子的衰变以及π介子的衰变等;另一种是κ介子和∧超子的衰变。这两种弱相互作用的强度相同,都比强相互作用弱1012倍,相互作用时间约为10^(-6)~10^(-8)s

强相互作用力乃是让强子们结合在一块的作用力,人们认为其作用机制乃是核子间相互交换介子而产生的。

而其实,强子们之间的相互作用实际上乃是夸克团体与夸克团体之间的相互作用,而夸克团体之间的相互作用则必然乃夸克与夸克之间相互作用的剩余。而夸克之间的相互作用我们已知它是未饱和游空子重合体之间相互作用的延伸,这才是真正的强相互作用之作用机制。

大约地说,当夸克们结合成为强子时,其结构已经较为严密完整,可是,如果强子之间发生了强烈的撞击作用,那么各强子原来的结构则定会遭到破坏,因此,各强子中的大小夸克们则自然会重新产生相互的作用而结合在一块;这,正就是强相互作用的现象。

而说到底,强相互作用的实质乃是由于未饱和游空子重合体之中心体因其综合循环体的未饱和而通过静空子中间体渗透出中心极性而与别的未饱和游空子重合体之外层循环体产生相互吸引,并且自身的循环体同理也受到对方中心体吸引,因而它们之间则产生了强烈的相互作用从而形成了各种层次的联合构成体,而强相互作用则乃是其中一个层次上的联合相互作用而已。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/zaji/5802580.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-02-01
下一篇 2023-02-01

发表评论

登录后才能评论

评论列表(0条)

保存