离子极化作用

离子极化作用,第1张

离子极化作用的强弱与离子的极化力和变形性两因素有关:

极化力:离子使其它离子极化而发生变形

的能力.影响离子极化力强弱的因素:①离子带正电荷越多,极化力越强.②离子半径越小,极化力越强.③8电子型离子极化力弱,9~17、18、18+2型极化力强

变形性:离子可以被极化的程度叫离子的

变形性.影响离子变形性强弱的因素:①正电荷越少,负电荷越多,变形性越大.②离子半径越大,变形性越大③8电子型变形性小,其它电子型变形性大.总之,在一个化合物中,主要是正离子的极化力引起负离子的变形.

离子的极化(Ionic polarization)由法扬斯(Fajans)首先提出。离子极化指的是在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象。离子极化能对金属化合物性质产生影响。

基本介绍中文名 :离子极化 外文名 :Ionic polarization 提出者 :法扬斯 影响 :对金属化合物性质产生影响 概念,首先提出, 概念 离子极化 ionic polarization 在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象。离子极化使正、负离子之间在原静电相互作用的基础上又附加以新的作用,它是由离子在极化时产生的诱导偶极矩μ引起的。μ与电场强度E的比值μ/E称为极化率,它可作为离子可极化性大小的量度。正、负离子虽可互相极化,但一般说,由于正离子半径小,电子云不易变形,可极化性小,主要作为极化者;负离子恰好相反,是被极化者。离子极化的结果使离子键成分减少,而共价键成分增加,从而产生一定的结构效应,影响化合物的物理、化学性质。离子极化可使键力加强、键长缩短、键的极性降低以至结构型式变异,从离子晶体的高对称结构向层型结构过渡。 首先提出 离子的极化(Ionic polarization) 法扬斯(Fajans)首先提出 离子的极化 a.离子在外电场或另外离子的影响下,原子核与电子云会发生相对位移而变形的现象,称为离子的极化。 b.极化作用(polarization power) 离子使异号离子极化的作用,称为极化作用。 c.极化率(或变形性)(polarizability) 被异号离子极化而发生电子云变形的能力,称为极化率或变形性。 (2) 无论是正离子或负离子都有极化作用和变形性两个方面,但是正离子半径一般比负离子小,所以正离子的极化作用大,而负离子的变形性大。负离子对正离子的极化作用(负离子变形后对正离子电子云发生变形),称为附加极化作用。 (3) 离子的极化作用可使典型的离子键向典型的共价键过渡。这是因为正、负离子之间的极化作用,加强了“离子对”的作用力,而削弱了离子对与离子对之间的作用力的结果。 Fig. 8.8 Polarization effect beeen cation and anion 离子极化作用的规律 a.正离子电荷越高,半径越小,离子势 φ ( Z / r )越大,则极化作用越强。 b.在相同离子电荷和半径相近的情况下,不同电子构型的正离子极化作用不同:8电子构型 <9-17电子构型 <(18,18+2) 电子构型。 例如: r(Hg)= 102pm, r(Ca)= 100pm,但Hg的极化作用大于Ca 解释:(i) 由于d态电子云空间分布的特征,使其禁止作用小 (ii) 由于d态电子云本身易变形,因此d电子的极化和附加极化作用都要比相同电荷、相同半径的8电子构型的离子的极化和附加极化作用大。 c.负离子的电荷越低,半径越大,变形性越大。 例如:F<Cl d.对于复杂的阴离子:中心离子的氧化数越高,变形性越小。 例如:变形性从大到小排列: ClO>ClO2>ClO3>ClO4 离子极化对金属化合物性质的影响 a.金属化合物熔点的变化 MgCl2>CuCl2 b.金属化合物溶解性的变化 AgF>AgCl>AgBr>AgI,这是由于从F到 I离子受到Ag的极化作用而变形性增大的缘故。 c.金属盐的热稳定性 NaHCO3的热稳定性小于Na2CO3。从BeCO3 BaCO3热稳定性增大,金属离子对O离子的反极化作用(相对于把C与O看作存在极化作用)越强,金属碳酸盐越不稳定。 d.金属化合物的颜色的变化 极化作用越强,金属化合物的颜色越深。 AgCl(白),AgBr(浅黄),AgI(黄) HgCl2(白),HgBr2(白),HgI2(红) e.金属化合物晶型的转变  CdS: r + / r - = 97pm/184pm = 0.53>0.414,理应是NaCl型,即六配位,实际上,CdS晶体是四配位的ZnS型。这说明 r + / r -<0.414。这是由于离子极化,电子云进一步重叠而使 r + / r - 比值变小的缘故。 f.离子极化增强化合物导电性和金属性 在有的情况下,阴离子被阳离子极化后,使电子脱离阴离子而成为自由电子,这样就使离子晶体向金属晶体过渡,化合物的电导率、金属性都相应增强,如FeS、CoS、NiS都有一定的金属性。 元素的离子分类与极化关系 1. 惰性气体型离子 惰性气体型离子指最外层具8或2个电子,构型与惰性气体原子一样的离子。在元素周期表中,位于第IA,IIA,VIIA各主族和第二、三周期元素(除H和惰性气体原子外)多属该类型离子。这类元素电离势较低,离子半径较大,易与氧结合成氧化物或含氧盐矿物,所以也常称作亲氧元素。形成的矿物多为造岩矿物,所以也称作亲石元素。 2.铜型离子 t铜型离子指最外层电子有18或18+2个,构型与一价铜离子最外电子层相同的离子。在元素周期表中,位于第四、五、六周期之IB、IIB、IIIA、VIA各族元素均属铜型离子。这类元素电离势较高,离子半径较小,极化能力强,易与硫结合成硫化物或其类似化合物矿物,亦称作亲硫元素或造矿元素。 3.过渡型离子 过渡型离子指最外电子层为9~17个电子的不稳定离子。周期表中第四、五、六周期IIIB~VIIB及VIII族,序号小于104的元素属过渡型元素。这类离子中,Mn族左侧者常表现出与惰性气体型离子类似的性质,为亲氧性过渡型离子,其右侧者表现出与铜型离子类似的性质,为亲铜性过渡型离子。

离子极化

ionic polarization

在离子化合物中,正、负离子的电子云分布在对方离子的电场作用下,发生变形的现象。离子极化使正、负离子之间在原静电相互作用的基础上又附加以新的作用,它是由离子在极化时产生的诱导偶极矩μ引起的。μ与电场强度E的比值μ/E称为极化率,它可作为离子可极化性大小的量度。正、负离子虽可互相极化,但一般说,由于正离子半径小,电子云不易变形,可极化性小,主要作为极化者;负离子恰好相反,是被极化者。离子极化的结果使离子键成分减少,而共价键成分增加,从而产生一定的结构效应,影响化合物的物理、化学性质。离子极化可使键力加强、键长缩短、键的极性降低以至结构型式变异,从离子晶体的高对称结构向层型结构过渡。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/zaji/5809514.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-02-01
下一篇 2023-02-01

发表评论

登录后才能评论

评论列表(0条)

保存