数控机床光栅的介绍

数控机床光栅的介绍,第1张

数控机床物理光栅的刻线细而密,栅距(两刻线间的距离)在。002—0 005mm之间,通常用于光谱分析和光波波长的测定。数控机床计量光栅相对来说刻线较粗,栅距在0004—0 25mm乏间,通常用于数字检测系统,用来检测高精度的直线位移和角位移。数控机床计量光栅是用于数控机床的精密检测装置,具有测量精度高、响应速度快、量程宽等特点,是闭环系统中一种用得较多的位置检测装置。

1数控机床光栅的种类

根据光线在光栅中是反射还是透射分为透射光栅和反射光栅;透射光栅是在玻璃的表面上制成透明与不透明间隔相等的线纹。反射光栅是在钢尺或不锈钢带的表面上,光整加工成反射光很强的镜面,用照相腐蚀工艺制作光栅条纹。

根据光栅形状可分为直线光栅和圆光栅,直线光栅用于检测直线位移,圆光栅用于检测角位移。

2数控机床光栅的结构与工作原理

(1)数控机床直线透射光栅的组成

光栅位置检测装置由光派、长光栅(标尺光栅)、短光栅(指示光栅)、光电接收元件等组成。

光栅装置由标尺光栅和指示光栅组成,在标尺光栅和指示光栅上都有密度相同的许多刻线,称为光栅条纹。光栅条纹的密度一般为每毫米25、50100或250条。通常指示光栅固定在机床的固定部件上,标尺光栅固定在机床的移动部件上t两者随数控机床移动部件的移动而相对移动。两光栅尺相互平行放置,并保持一定的间隙(o 00~oimm)重叠在一起a为栅线宽,^为栅线缝隙宽,d-。+^为光栅的栅距。数控机床由光源、透镜、光栅尺、光敏元件和一系列信号处理电路组成。信号处理电路一般包括放大、整形、鉴向、倍频电路等。通常情况下,除标尺光栅与工作龠装在一起随其移动外,光源、透镜、指示光栅、光敏元件和信号处理电路均装在一个壳体内,做成一个单独的部件,固定在机床上,其作用是将光栅莫尔条纹变成电信号。读数头由光源,透镜、指示光栅、光敏元件和驱动线路组成,是一个单独的部件。

(2)光数控机床栅的基本测量原理

对于棚距d相等的指示光栅和标尺光栅,当两光栅尺沿线纹方向保持一个很小的夹角日、刻划面相对平行且有一个很小的间隙(一般取0 05mm,0 imm)放置时,在光源的照射下,由于先的衍射或遮光效应,在与两光栅线纹角目的平分线相垂直的方向上,形成明暗相间的条纹,这种条纹称‘莫尔条纹’。由于0角很小-所以奠尔条纹近似垂直于光栅的线纹,故有时称莫尔条纹为横向奠尔条纹。莫尔条纹中两条亮纹或两条暗纹之间的距离称为奠尔条纹的宽度,以埘表不。

莫尔条纹具有如下特性:

①起放大作用。如图4-25(b)所示,在倾斜角自很小时,莫尔条纹宽度Ⅲ与栅距d之间有如下关系

叫一d/(2sin0/2)≈d,10

若取d=0OimmO=OOirad,则w-imm。利用光的干涉现象,就能把光栅的栅距d转换成放大100倍的莫尔条纹宽度山。

②实现平均误差作用。莫尔条纹是由大量光栅线纹干涉共同形成的,使得栅距之间的相邻误差被平均化了·消除了由光栅线纹的制造误差导致的栅距不均匀而造成的测量误差。

③莫尔条纹的移动与栅距的移动成比例。当光栅移动一个栅距时,莫尔条纹也相应移动一个奠尔条纹宽度;若光栅移动方向相反,则莫尔条纹移动方I句也相反。莫尔条纹移动方向与两光栅夹角口移动方向垂直。这样,测量光栅水平方向移动的微小距离就可用检测莫尔条纹移动的变化来代替。

由于莫尔条纹的位移刚好反映丁光栅栅距的位移,同时莫尔条纹的光强也经历了一个由亮到暗、由暗到亮的正弦变化周期。这样,栅距移动与莫尔条纹移动的对应关系,便于用光敏元件(如硅先电池)将光信号转换成电信号。

编码器是一种旋转式的检测角位移的传感器。在位移检测传感器中,编码器是数控机床中使用较多的一种传感器。编码器按码盘的读取方式,可分为光电式、接触式和电磁式。就精度和可靠性来讲,光电式编码器优于其他两种,是目前应用较多的一种。下面主要介绍光电脉冲编码器。

脉冲编码器的型号由每转发出的脉冲数来区分。

数控机床上常用的脉冲编码器有2 000P/r、2 000P/r、3 000P/r等,在高速、高精度数字伺服系统中应用高分辨率的脉冲编码器,如20 000P/r、20 000P/r和30 000P/r等,现在已有使用每转发10万个脉冲的脉冲编码器,该编码器装置内部采用了微处理器。

子啊有些时候我们的电脑屏幕出现条纹 死机 ,这该怎么办呢下面就由我来为你们简单的介绍电脑屏幕出现条纹死机的解决 方法 吧!希望你们喜欢!

电脑屏幕出现条纹死机的解决方法:

(1)显卡接触不良故障:

显卡接触不良通常会引起无法开机且有报警声或系统不稳定死机等故障。造成显卡接触不良的原因主要是显卡金手指被氧化、灰尘、显卡品质差或机箱挡板问题等。对于金手指被氧化造成的接触不良,可以使用橡皮擦拭金手指来解决;对于灰尘引起的接触不良,一般清除灰尘后即可解决;对于硬件品质造成的接触不良,通常通过替换法来检测,一般采用更换显卡来解决;对于机箱挡板问题造成的接触不良,通常显卡无法完全插入显卡插槽,可采用更换机箱来排除。

(2)兼容性问题:

兼容性故障通常会引起电脑无法开机且报警声、系统不稳定死机或屏幕出现异常杂点等故障现象。显卡兼容性故障一般发生在电脑刚装机或进行升级后,多见于主板与显卡的不兼容或主板插槽与显卡金手指不能完全接触。显卡兼容性故障通常采用替换法进行检测,一般采用更换显卡来排除故障。

(3)显卡元器件损坏故障:

显卡元器件损坏故障通常会造成电脑无法开机、系统不稳定死机、花屏等故障现象。显卡元器件损坏一般包括显卡芯片损坏、显卡 BIOS 损坏、显存损坏、显卡电容损坏或场效应管损坏等。对于显卡元器件损坏故障一般需要仔细测量显卡电路中的各个信号来判断损坏的元器件,找到损坏的元器件后,进行更换即可。

(4)显卡过热故障:

由于显卡芯片在工作时会产生大量的热量,因此需要有比较好的散热条件,如果散热风扇损坏将导致显卡过热无法正常工作。显卡过热故障通常会造成系统不稳定死机、花屏等故障现象。出现显卡过热只要更换散热风扇即可。

(5)显卡驱动程序故障:

显卡驱动程序故障通常会造成系统不稳定死机、花屏、文字图像显卡不完全等故障现象。显卡驱动程序故障主要包括显卡驱动程序丢失、显卡驱动程序与系统不兼容、显卡驱动程序损坏、无法安装显卡驱动程序等。对于显卡驱动程序故障一般首先进入“设备管理器”查看是否有显卡的驱动程序,如果没有,重新安装即可。如果有,但显卡驱动程序上有“!”,说明显卡驱动程序没有安装好、驱动程序版本不对、驱动程序与系统不兼容等。一般删除显卡驱动程序重新安装,如果安装后还有“!”,可以下载新版的驱动程序安装。如果无法安装显卡驱动程序,一般是驱动程序有问题或注册表有问题。

(6)CMOS设置故障:

CMOS设置故障是由于CMOS中显示相关选项设置错误引起的故障。常见CMOS设置故障主要包括:集成显卡的主板,CMOS中的显卡屏蔽选项设置错误;如“AGP Driving Control”选项设置错误(一般应为“AUTO”),“AGP Aperture Size”选项设置错误:“FAST Write Supported”选项设置错误等。CMOS设置错误一般用载入默认BIOS值修改即可。

(7)显卡超频问题:

显卡超频问题是指使用时为了提高显卡的速度,提高显卡的工作频率而导致的 电脑故障 。出现问题后,可以将频率恢复到出厂默认设置即可。

如果需要驱动,建议安装驱动精灵2008 ,安装之后,使用其自动更新驱动功能,它会自动下载并安装最新版本驱动,包括网卡、声卡、显卡、USB等,免去寻找和安装之苦。

常见的 显示器 故障现象如下:(1)开机无显示、显示器经常不加电。(2)显示器屏幕上的字符显示比较模糊。(3)显示器有色斑。(4)显示器出现波浪状的彩色条纹。(5)显示器有异味。(6)从显示器发出连续的“啪啪”声。(7)在某种应用或配置下花屏、发暗(甚至黑屏)、重影、死机等。(8)显示器缺色、散焦、屏幕过亮或过暗、有回归线。(9)修眠唤醒后显示异常。(10)显示器屏幕上出现局部颜色不正。(11)显示器光栅暗淡。(12)显示偏色、抖动或滚动、显示发虚、花屏等。

(13)屏幕参数不能设置或修改。(14)亮度或对比度不可调,或可调范围较小。(15)屏幕大小或位置不能调节,或可调范围较小。(16)显示器开始一切正常,用一会后屏幕底色变白,关掉显示器,过一会重开又正常等。

显示器常见故障诊断:

显示器常见故障可以分为硬故障和软故障,其中硬故障主要包括开关 电源故障 、行激励电路故障、行输出电路故障、场输出电路故障;显示器软故障主要包括频率及分辨率设置故障、菜单调整故障。

(1)开关电源故障诊断

显示器开关电源故障一般会造成会无光栅、无显示且指示灯不亮,无显示但指示灯闪烁等。显示器开关电源故障一般由滤波电容损坏、取样电容损坏、整流桥中的二极管损坏、高频振荡控制器损坏、 保险 丝烧断等引起的。首先目测有无明显损坏的元器件,如保险管(有些保险管因不透明看不到),元件有无炸裂,滤波电容有无异样。通过观察明显损坏的元件可以大致判断故障的位置。然后用静态电阻测量法测量电路有无明显短路点及短路元件,并排除短路故障。排除短路元件后,接着加电试机。根据加电后反应检测+300V直流电压是否正常,启动电压是否正常,保护电路是否工作。然后用假负载法脱开行输出管进行检测,检测时可以切断输出管的供电来检测。

(2)行激励电路诊断

行激励电路故障通常会造成无显示或维修时屡次烧坏行输出管的故障。行激励电路的故障主要是由行推动管损坏造成。首先检查行推动管集电极电压,如电压正常,检查行输出管极有无--01 V~03 V电压。如有—01 V~03 V电压,接着检测行输出管及行输出电路是否有负电压;如无负电压检查行推动变压器。如果行推动管电极电压过低,检查行推动管、限流电阻、退藕电容、吸收元件等。如果行推动管集电压过高,检查行推动管基极电压和波形,如电压和波形正常,则是行推动管本身故障,更换即可;如果行推动管基极电压不正常,则是行振荡电路故障。

(3)行输出电路故障诊断

行输出电路故障通常会出现无显示、光栅暗淡、图像变形、行幅不正常、图像失真等故障现象。行输出电路故障主要由回扫变压器损坏、阻尼管损坏、逆程电容损坏、行偏转线圈损坏等引起。首先检查输出管c级对地电阻,开关电源主电压+B1端对地电阻。若正常,则可以加电试机。否则必须先排除对地短路故障。如果对地电阻正常,可以加电试机;如果对地电阻不正常,接着查找短路故障元件。如果发现短路元件,但更换短路元件后还不正常,接着将偏转线圈插头拔下,把加速极旋纽向左旋到底(将加速电压跳=调至最低,防止因无偏转电流产生亮点灼伤显像管)进行检测。若正常了,说明行偏转坏;否则是回扫变压器坏。

(4)场输出电路故障诊断

场输出电路故障通常会出现水平有一条亮线、场线性不良或场幅不足的故障现象。场输出电路故障一般由场输出芯片供电故障、场输出芯片损坏、升压电容损坏、升压二极管损坏、场振荡电路故障等引起的。首先检查输出芯片的供电是否正常,如果供电不正常,检测供电电路(元器件损坏、开路等);如果供电正常,接着检查场输出芯片的中点电压是否正常。如果中点电压不正常,则是场输出芯片损坏,更换芯片;如果中点电压正常,接着检查自举升压电容和二极管是否正常,如果不正常,更换损坏的器件。如果自举升压电容、二极管正常接着反馈元件是否损坏,如果有损坏更换损坏器件;如果反馈元件正常,检查场输出芯片的信号输入是否正常。如果不正常,检查场振荡级故障;如果正常,检查VDY(场偏转线圈)。

(5)显示器被磁化故障诊断

显示器被磁化通常会出现色斑。导致显示器被磁化原因主要是显示器靠近磁性物品,或搬动显示器后,使机内偏转线圈发生移位,或消磁电路损坏等引起的。显示器被磁化可以利用显示器自身带的消磁功能进行消磁。消除方法为:打开显示器的功能菜单,然后选择消磁选项并执行消磁,接着听见显示器发出“砰”的一响,显示器画面出现剧烈的抖动,之后就完成消磁。

很多朋友可能还不清楚光栅尺,光栅尺经常应用于数控机床的闭环伺服系统中,可用作直线位移或者角位移的检测。其测量输出的信号为数字脉冲,具有检测范围大,检测精度高,响应速度快的特点。不过本文要给大家讲的是光栅尺安装以及使用的相关事宜。

一、光栅尺安装指导

光栅尺线位移传感器的安装比较灵活,可安装在机床的不同部位。

一般将主尺安装在机床的工作台(滑板)上,随机床走刀而动,读数头固定在床身上,尽可能使读数头安装在主尺的下方。其安装方式的选择必须注意切屑、切削液及油液的溅落方向。如果由于安装位置限制必须采用读数头朝上的方式安装时,则必须增加辅助密封装置。另外,一般情况下,读数头应尽量安装在相对机床静止部件上,此时输出导线不移动易固定,而尺身则应安装在相对机床运动的部件上(如滑板)。

1、光栅尺线位移传感器安装基面

安装光栅尺传感器时,不能直接将传感器安装在粗糙不平的机床身上,更不能安装在打底涂漆的机床身上。光栅主尺及读数头分别安装在机床相对运动的两个部件上。用千分表检查机床工作台的主尺安装面与导轨运动的方向平行度。千分表固定在床身上,移动工作台,要求达到平行度为01mm/1000mm以内。如果不能达到这个要求,则需设计加工一件光栅尺基座。

基座要求做到:(1)应加一根与光栅尺尺身长度相等的基座(好基座长出光栅尺50mm左右)。(2)该基座通过铣、磨工序加工,保证其平面平行度01mm/1000mm以内。另外,还需加工一件与尺身基座等高的读数头基座。读数头的基座与尺身的基座总共误差不得大于±02mm。安装时,调整读数头位置,达到读数头与光栅尺尺身的平行度为01mm左右,读数头与光栅尺尺身之间的间距为1~15mm左右。

2、光栅尺线位移传感器主尺安装

将光栅主尺用M4螺钉上在机床安装的工作台安装面上,但不要上紧,把千分表固定在床身上,移动工作台(主尺与工作台同时移动)。用千分表测量主尺平面与机床导轨运动方向的平行度,调整主尺M4螺钉位置,使主尺平行度满足01mm/1000mm以内时,把M2螺钉彻底上紧。

在安装光栅主尺时,应注意如下三点:

(1) 在装主尺时,如安装超过15M以上的光栅时,不能象桥梁式只安装两端头,尚需在整个主尺尺身中有支撑。(2)在有基座情况下安装好后,好用一个卡子卡住尺身中点(或几点)。(3)不能安装卡子时,好用玻璃胶粘住光栅尺身,使基尺与主尺固定好。

  3、光栅尺线位移传感器读数头的安装

在安装读数头时,首先应保证读数头的基面达到安装要求,然后再安装读数头,其安装方法与主尺相似。后调整读数头,使读数头与光栅主尺平行度保证在01mm之内,其读数头与主尺的间隙控制在1~15mm以内。

4、光栅尺线位移传感器限位装置

光栅线位移传感器全部安装完以后,一定要在机床导轨上安装限位装置,以免机床加工产品移动时读数头冲撞到主尺两端,从而损坏光栅尺。另外,用户在选购光栅线位移传感器时,应尽量选用超出机床加工尺寸100mm左右的光栅尺,以留有余量。

5、光栅尺线位移传感器检查

光栅线位移传感器安装完毕后,可接通数显表,移动工作台,观察数显表计数是否正常。

在机床上选取一个参考位置,来回移动工作点至该选取的位置。数显表读数应相同(或回零)。另外也可使用千分表(或百分表),使千分表与数显表同时调至零(或记忆起始数据),往返多次后回到初始位置,观察数显表与千分表的数据是否一致。

通过以上工作,光栅尺线位移传感器的安装就完成了。但对于一般的机床加工环境来讲,铁屑、切削液及油污较多。因此,传感器应附带加装护罩,护罩的设计是按照传感器的外形截面放大留一定的空间尺寸确定,护罩通常采用橡皮密封,使其具备一定的防水防油能力。

二、光栅尺使用注意事项

(1)光栅尺传感器与数显表插头座插拔时应关闭电源后进行。

(2)尽可能外加保护罩,并及时清理溅落在尺上的切屑和油液,严格防止任何异物进入光栅尺传感器壳体内部。

(3)定期检查各安装联接螺钉是否松动。

(4)为延长防尘密封条的寿命,可在密封条上均匀涂上一薄层硅油,注意勿溅落在玻璃光栅刻划面上。

(5) 为保证光栅尺传感器使用的可靠性,可每隔一定时间用乙醇混合液(各50%)清洗擦拭光栅尺面及指示光栅面,保持玻璃光栅尺面清洁。

(6) 光栅尺传感器严禁剧烈震动及摔打,以免破坏光栅尺,如光栅尺断裂,光栅尺传感器即失效了。

(7) 不要自行拆开光栅尺传感器,更不能任意改动主栅尺与副栅尺的相对间距,否则一方面可能破坏光栅尺传感器的精度;另一方面还可能造成主栅尺与副栅尺的相对摩擦,损坏铬层也就损坏了栅线,以而造成光栅尺报废。

(8) 应注意防止油污及水污染光栅尺面,以免破坏光栅尺线条纹分布,引起测量误差。

(9) 光栅尺传感器应尽量避免在有严重腐蚀作用的环境中工作,以免腐蚀光栅铬层及光栅尺表面,破坏光栅尺质量。

土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:

导语:光栅式传感器是一种新型的传感器,,它是指使用光栅叠栅条纹原理来测量距离的传感器。所谓的光栅就是一块呈长方形的光学玻璃上刻画着许多等距平行的线,一般情况下,刻线的密度大约在十毫米到一百毫米之间。光学传感器的应用还是比较广泛的,那么生活中到底有哪些地方用到了光学传感器呢。小编在此整理了一些光栅传感器的相关资料,让我们一起来了解一下吧。

光栅的发现距今已经有两百多年的时间了,在一九七八年的时候,加拿大渥太华的一家通信研究中心,一群研究人员第一次在掺入锗石英的光纤中发闲了一种神奇的效应,光敏效应。在发现这项效应之后,被当时的驻波写入,制作成了世界上的第一根光栅。在十九世纪以后,美国的一家技术研究中心光栅的侧面写入技术,正是因为这些科学家的不懈努力,所以才使得光栅技术有了很大的进展。同时随着科学技术的不断进步,光栅的制造技术也在不断完善,而且在各个领域的应用也在不断普及。

因为光栅是利用光纤制作而成的,所以光栅也具备光纤的一些特性,比如说光纤对光线的折射率会随着光强的空间分布发生变化而产生相应的变化。本文之中的一些语句是比较复杂难懂的,但是这也是没有办法的事情,希望大家体谅。在光纤的内芯会形成一定的光栅,而所谓的光栅,其实也就是一个类似于反射镜的东西。光栅式传感器正是利用这一特性制作而成。利用光栅原理制作的器械有着以下许多优点:附加的损耗小,一般体积也比较小而且反射范围相对要比较大。

光栅式传感器的工作原理是这样的。传感器上的标尺光栅会随着指示光栅进行移动,当移动到一定的距离之后,在标尺光栅上就会形成一些明暗相间的条纹。这些条纹会照射到光电元件上,并且会进行快速的移动。一般情况下,光栅传感器的光路形式有两种,一个是反射式光栅,另一种是投射式光栅。光栅传感器的应用范围十分广泛,它大量的应用于数控机床,远程 *** 和一些坐标测量机构中。

就目前的情况而言,光栅传感器的发展前景还是十分广阔的。因为光栅传感器的尺寸很小,易于携带也易于安放,同时它的重量也很轻。所以广泛的应用于航空航天领域。

通过对本文的阅读,大家是否对光栅传感器有了一定的了解呢。

土巴兔在线免费为大家提供“各家装修报价、1-4家本地装修公司、3套装修设计方案”,还有装修避坑攻略!点击此链接:

现代光栅测量技术

从20世纪50年代至70年代,栅式测量系统从感应同步器发展到光栅、磁栅、容栅和球栅,这5种测量系统都是将一个栅距周期内的绝对式测量和周期外的增量式测量结合起来,测量单位不是像激光一样的光波波长,而是通用的米制(或英制) 标尺。它们有各自的优点,相互补充,在竞争中都得到了发展。但光栅测量系统的综合技术性能优于其它4种,而且其制造费用又比感应同步器、磁栅、球栅低,因此光栅发展最快,技术性能最高,市场占有率最高,产业最大。在栅式测量系统中,光栅的占有率已超过80%,光栅长度测量系统的分辨率已覆盖微米级、亚微米级和纳米级;测量速度从60m/min至480m/min。测量长度从1m 、3m 至30m 和100m 。

光栅测量技术的发展

计量光栅技术的基础——莫尔条纹(Moire fringes) 是由英国物理学家L Rayleigh 首先提出的。到20世纪50年代才开始利用光栅的莫尔条纹进行精密测量。1950年,德国Heidenhain 首创DIADUR 复制工艺,即在玻璃基板上蒸发镀铬的光刻复制工艺,可制造出高精度、价格低廉的光栅刻度尺,所以光栅计量仪器才被广大用户所接受,并进入商品市场。1953年,英国Ferranti 公司提出了一个4相信号系统,可以在一个莫尔条纹周期实现4倍频细分,并能鉴别移动方向,这就是4倍频鉴相技术,是光栅测量系统的基础,并一直应用至今。

60年代初,德国Heidenhain 公司开始开发光栅尺和圆栅编码器,并制造出栅距为4μm(250线/mm)的光栅尺和10000线/转的圆光栅测量系统,可实现1μm 和1角秒的测量分辨率。1966年又制造出了栅距为20μm(50线/mm)的封闭式直线光栅编码器。在80年代又推出了AURODUR 工艺,是在钢基材料上制作高反射率的金属线纹反射光栅,并在光栅一个参考标记(零位) 的基础上增加了距离编码。1987年,又提出一种新的干涉原理,即采用衍射光栅实现纳米级的测量,并允许较宽松的安装。1997年推出用于绝对编码器的EnDat 双向串行快速连续接口,使绝对编码器和增量编码器一样很方便地应用于测量系统。现在光栅测量系统已十分完善,应用的领域很广,全世界光栅直线传感器的年产量在60万件左右,其中封闭式光栅尺约占85%,开启式光栅尺约占15%。在Heidenhain 公司的产品销售额中,直线光栅编码器约占40%,圆光栅编码器占30%,数显、数控及倍频器占30%。Heidenhain 公司总部的年销售额约为7亿欧元(不含Heidenhain 跨国公司所属的40家企业) 。国外企业的人均产值在10~15万美元左右,研究开发人员约占雇员的10%,产品研发经费约占销售额的15%。

当今采用的光电扫描原理及其产品系列

根据形成莫尔条纹原理的不同,激光可分为几何光栅(幅值光栅) 和衍射光栅(相位光栅) ,又可根据光路的不同分为透射光栅和反射光栅。微米级和亚微米级的光栅测量是采用几何光栅,光栅栅距为100μm 至20μm ,远大于光源光波波长,衍射现象可以忽略,当两块光栅相对移动时产生低频拍现象形成莫尔条纹,其测量原理称影像原理。纳米级的光栅测量是采用衍射光栅,光栅栅距为8μm 或4μm ,栅线的宽度与光的波长很接近,则产生衍射和干涉现象形成莫尔条纹,其测量原理称干涉原理。现将德国Heidenhain 公司产品采用的三种测量原理加以介绍。

(1) 具有四场扫描的影像测量原理(透射法)

采用垂直入射光学系统均为4相信号系统,是将指示光栅(扫描掩膜) 开四个窗口分为4相,每相栅线依次错位1/4栅距,在接收的4个光电元件上可得到理想的4相信号,这称为具有四场扫描的影像测量原理。Heidenhain 的LS 系列产品均采用此原理,其栅距为20μm ,测量步距为05μm ,准确度为±10、±5、±3μm 三种,最大测量长度为3m ,载体为玻璃。

(2) 有准单场扫描的影像测量原理(反射法)

反射标尺光栅是采用40μm 栅距的钢带,指示光栅(扫描掩膜) 用两个相互交错并有不同衍射性能的相位光栅组成,为此,一个扫描场就可以产生相移为1/4栅距的四个图象,称此原理为准单场扫描的影像测量原理。由于只用一个扫描场,标尺光栅局部的污染使光场强度的变化是均匀的,并对四个光电接收元件的影响是相同的,因此不会影响光栅信号的质量。与此同时,指示光栅和标尺光栅的间隙和间隙方差能大一些。Heidenhain LB 和LIDA 系列的金属反射光栅就是采用这一原理。LIDA 系列开式光栅,其栅距为40μm 和20μm ,测量步距为01μm ,准确度有±5μm 、±3μm ,测量长度可达30m ,最大速度为480m/min。LB 系列闭式光栅栅距都是40μm ,最大速度可达120m/min。

(3) 单场扫描的干涉测量原理

对于栅距很小的光栅,指示光栅是一个透明的相位光栅,标尺光栅是自身反射的相位光栅,光束是通过双光栅的衍射,在每一级的诸光束相互干涉,就形成了莫尔条纹,其中+1和-1级组干涉条纹是基波条纹,基波条纹变化的周期与光栅的栅距是同步对应的。光调制产生3个相位差120°的测量信号,由三个光电元件接收,随后又转换成通用的相位差90°的正弦信号。Heidenhain LF、LIP 、LIF 系列光栅尺是按干涉原理工作,其光栅尺的载体有钢板、钢带、玻璃和玻璃陶瓷,这些系列产品都是亚微米和钠米级的,其中最小分辨率达到1纳米。

在20世纪80年代后期,栅距为10μm 的透射光栅LID351(分辨率为005μm) ,其间隙要求就比较严格(01±0015)mm 。由于采用了新的干涉测量原理,对纳米级的衍射光栅安装公差就放得比较宽,例如指示光栅和标尺光栅之间的间隙和平行度都很宽(见表1) 。

表1 指示光栅和标尺光栅之间的间隙和平行度

光栅型号-信号周期(μm) -分辨率(nm)-间隙(mm)-平行度(mm)

LIP372-0218-1-03-±002

LIP471-2-5-06-±002

LIP571-4-50-05-±006

只有衍射光栅LIP372的栅距是0512μm ,经光学倍频后,信号周期为0128μm, 其它栅距均为8μm 和4μm ,经光学二倍频后得到的信号周期为4μm 和2μm ,其分辨率为5nm 和50nm ,系统准确度为±05μm 和±1μm ,速度为30m/min。LIF 系列栅距是8μm, 分辨率01μm, 准确度±1μm ,速度为72m/min。其载体为温度系数近于零的玻璃陶瓷或温度系数为8ppm/K的玻璃。衍射光栅LF 系列是闭式光栅尺,其栅距为8μm, 信号周期为4μm ,测量分辨率01μm, 系统准确度±3μm 和±2μm ,最大速度60m/min,测量长度达3m, 载体采用钢尺和钢膨胀系数(10ppm/K)一样的玻璃。

光栅测量系统的几个关键问题

(1) 测量准确度(精度)

光栅线位移传感器的测量准确度,首先取决于标尺光栅刻线划分度的质量和指示光栅扫描的质量(栅线边沿清晰至关重要) ,其次才是信号处理电路的质量和指示光栅沿标尺光栅导向的误差。影响光栅尺测量准确度的是在光栅整个测量长度上的位置偏差和光栅一个信号周期内的位置偏差。

光栅尺的准确度(精度) 用准确度等级表示,Heidenhain 定义为:在任意1m 测量长度区段内建立在平均值基础上的位置偏差的最大值Fmax 均落在±a(μm) 之内,则±a 为准确度等级。Heidenhain 准确度等级划分为:±01、±02、±05、±1、±2、±3、±5、±10和±15μm 。由此可见,Heidenhain 光栅尺的准确度等级和测量长度无关,这是很高的一个要求,目前还没有一家厂商能够达到这一水平。

现在Heidenhain 玻璃透射光栅和金属反射光栅的栅距只采用20μm 和40μm ,对衍射光栅栅距采用4μm 和8μm ,光学二倍频后信号周期为2μm 和4μm 。Heidenhain 要求开式光栅一个信号周期的位置偏差仅为±1%,闭式光栅仅为±2%,光栅信号周期及位置偏差见表2。

表2 光栅信号周期及位置偏差

光栅类别-信号周期(μm) -一个信号周期内的位置偏差(μm)

几何光栅-20和40-开启式光栅尺±1%,即±02~±04;封闭式光栅尺±2%,即±04~±08 衍射光栅-2和4-开启式光栅尺±1%,即±002~±004;封闭式光栅尺±2%,即±002~±008

(2)信号的处理及栅距的细分

光栅的测量是将一个周期内的绝对式测量和周期外的增量式测量结合在一起,也就是说在栅距一个周期内将栅距细分后进行绝对的测量,超过周期的量程则用连续的增量式测量。为了保证测量的精度,除了对光栅的刻划质量和运动精度有要求外,还必须对光栅的莫尔条纹信号的质量有一定的要求,因为这影响电子细分的精度,也就是影响光栅测量信号的细分数(倍频数) 和测量分辨率(测量步距) 。栅距的细分数和准确性也影响光栅测量系统的准确度和测量步距。对莫尔条纹信号质量的要求主要是信号的正弦性和正交性要好;信号直流电平漂移要小。对读数头中的光电转换电路和后续的数字化插补电路要求频率特性好,才能保证测量速度高。

公司专门为光栅传感器和crc 相联结设计了光栅倍频器,即将光栅传感器输出的正弦信号(一个周期是一个栅距) 进行插补和数字化处理后给出相位相差90°的方波,其细分数(倍频数) 有5、10、25、50、100、200和400,再考虑到数控系统的4倍频后对栅距的细分数有20、40、100、200、400、800和1600,能实现测量步距从1nm 到5μm, 倍频数选择取决于光栅信号一个栅距周期的质量。随着倍频数的增加,光栅传感器的输出频率要下降,倍频器的倍频细分数和输入频率的关系见表3。 表3 倍频器的倍频细分和输入频率

倍频细分数:0-2-10-25-50-100-200-400

输入频率(KHz ):600-500-200-100-50-25-125-625

选择不同的倍频数可以得到不同的测量步距。在Heidenhain 的数显表中可以设置15种之多的倍频数,最高频数可达1024,即1,2,4,5,10,20,40,50,64,80,100,128,200,400,1024。在微机上用的数显卡最大倍频数可到4096。

(3)光栅的参数标记和绝对坐标

① 光栅绝对位置的确立

光栅是增量测量,光栅尺的绝对位置是利用参考标记(零位) 确定。参考标记信号的宽度和光栅一个栅距的信号周期一致,经后续电路处理后参考信号的脉冲宽度和系统一个测量步距一致。为了缩短回零位的距离,Heidenhain 公司设计了在测量全长内按距离编码的参考标记,每当经过两个参考标记后就可以确定光栅尺的绝对位置,如栅距为4μm 和20μm 的光栅尺扫描单元相对于标尺的移动20mm 后就可确定绝对位置,栅距为40μm 的光栅尺要移动80mm 才能确定绝对位置。

② 绝对坐标传感器

为了在任何时刻测量到绝对位置,Heidenhain 设计制造了LC 系列绝对光栅尺,它是用七个增量码道得到绝对位置,每个码道是不同的,刻线最细码道的栅距有两种,一种是16μm ,另一种是20μm ,其分辨率都可为01μm ,准确度±3μm ,测量长度可达3m ,最大速度120m/min。它所采用的光电扫描原理和常用的透射光栅一样,是具有四场扫描的影像测量原理。

(4)光栅的载体

光栅尺在20°±01℃环境中制造,光栅尺的热性能直接影响到测量精度,在使用上光栅尺的热性能最好和被测件的热性能一致。考虑到不同的使用环境,Heidenhain 光栅尺刻度的载体具有不同的热膨胀系数。现有的材料有玻璃、钢和零膨胀的玻璃陶瓷。普通玻璃的膨胀系数为8ppm/K,现在Heidenhain 已采用了具有钢一样膨胀系数的玻璃。这些材料对振动、冲击不敏感,具有确定的热特性,不受气压和湿度变化的影响。对测量长度在3m 以下的光栅尺载体材料都采用玻璃、玻璃陶瓷和钢,超过3m 以上则用钢带。通过对标尺载体所用材料和相应结构的选择,使光栅尺与被测件的热性能有最佳的匹配。

打印机的工作方法都是横向的喷墨水,在一行喷完后,电机旋转带动纸到下一列,再横向喷墨水。这个行和列的位置该如何确定,就通过光栅来进行定位的。光栅上面是一条一条的条纹,就是透明和不透明隔开。打印机上面有光电传感器,光栅在通过光电传感器就会产生脉冲,如果一个脉冲表示10dpi,那么打印机就通过计算当前是第几个脉冲就知道当前打印头在那个位置,纸张在那个位置了。是使用中,如果光栅脏了,就会出现计数不准确,就会有打印出来的字局部左右偏或者上下偏。

喷墨技术

喷墨打印机采用技术主要有两种:连续式喷墨技术与随机式喷墨技术。早期的喷墨打印机以及当前大幅面的喷墨打印机都是采用连续式喷墨技术,而当前市面流行的喷墨打印机都普遍采用随机喷墨技术。连续喷墨技术以电荷调制型为代表,随机式喷墨系统中墨水只在打印需要时才喷射,所以又称为按需式。

连续式喷墨

连续喷墨技术以电荷调制型为代表。这种喷墨打印原理是利用压电驱动装置对喷头中墨水加以固定压力,使其连续喷射。为进行记录,利用振荡器的振动信号激励射流生成墨水滴,并对其墨水滴大小和间距进行控制。由字符发生器、模拟调制器而来的打印信息对控制电报上电荷进行控制,形成带电荷和不带电荷的墨水滴,再由偏转电极来改变墨水滴的飞行方向,使需要打印的墨水滴飞行到纸面上,生成字符/图形纪录。不参与纪录的墨水滴由导管回收。对偏转电极而言,有的系统采用两对互相垂直的偏转电极,对墨水滴打印位置进行二维偏转型;有的系统对偏转电极采用多维控制,即多维偏转型。

这种连续循环的喷墨系统.能生成高速墨水滴,所以打印速度高,可以使用普通纸。不同的打印介质皆可获得高质量的打印结果,还易于实现彩色打印。但是,这种喷墨打印机的结构与随机式相比,比较复杂:对墨水需要加压装置,终端要有回收装置回收不参与纪录的。并且工作方式的效率不够高,而且不精确。采用这种技术的喷墨打印机已经极少见到。

以上就是关于数控机床光栅的介绍全部的内容,包括:数控机床光栅的介绍、电脑屏幕出现条纹死机怎么办、光栅尺安装步骤,五大步解决等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/zz/10125068.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-05
下一篇 2023-05-05

发表评论

登录后才能评论

评论列表(0条)

保存