玻璃纤维短切毡工艺流程怎么写

玻璃纤维短切毡工艺流程怎么写,第1张

纤维增强环氧树脂复合材料成型工艺

一、前言

相比传统材料,复合材料具有一系列不可替代的特性,自二次大占以来发展很快。尽管产量小(据法国Vetrotex公司统计,2003年全球复合材料达700万吨),但复合材料的水平已是衡量一个国家或地区科技、经济水平的标志之一。美、日、西欧水平较高。北美、欧洲的产量分别占全球产量的33%与32%,以中国(含台湾省)、日本为主的亚洲占30%。中国大陆2003年玻班纤维增强塑料(玻璃纤维与树脂复合的复合材料、俗称“玻璃钢”)逾90万吨,已居世界第二位(美国2003年为169万吨,日本不足70万吨)。

复合材料主要由增强材料与基体材料两大部分组成:

增强材料:在复合材料中不构成连续相赋于复合材料的主要力学性能,如玻璃钢中的玻璃纤维,CFRP(碳纤维增强塑料)中的碳纤维素就是增强材料。

基体:构成复合材料连续相的单一材料如玻璃钢(GRP)中的树脂(本文谈到的环氧树脂)就是基体。 y

按基体材料不同,复合材料可分为三大类:

树脂复合材料

金属基复合材料

无机非金属基复合材料,如陶瓷基复合材料。

本文讨论环氧树脂基复合材料。

1、为什么采用环氧树脂做基体?

固化收缩率代低,仅1%-3%,而不饱和聚酯树脂却高达7%-8%;

粘结力强;

有B阶段,有利于生产工艺;

可低压固化,挥发份甚低;

固化后力学性能、耐化学性佳,电绝缘性能良好。

值得指出的是环氧树脂耐有机溶剂、耐碱性能较常用的酚醛与不饱和聚酯权势脂为佳,然耐酸性差;固化后一般较脆,韧性较差。

2、环氧玻璃钢性能(按ASTM)

以FW(纤维缠绕)法制造的玻纤增强环氧树脂的产品为例,将其与钢比较。

表1 GF/EPR与钢的性能比较

玻璃含量 GF/EPR(玻纤含量80wt%) AISI1008 冷轧钢

相对密度 208 786 V

拉伸强度 5516Mpa 3310MPa

拉伸模量 2758GPa 2067GPa

伸长率 16% 370%

弯曲强度 6895MPa

弯曲模量 3448GPa

压缩强度 3103MPa 3310MPa

悬臂冲击强度 2385J/m

燃烧性(UL-94) V-O

比热容 535J/kg•k 233J/kg•k

膨胀系数 40×10-6k-1 67×10-6k-1

热变形温度 204ºC(182MPa)

热导率 185W/m•k 337W/m•k

介电强度 118×106V/m

吸水率 05%(24h)

表2 几种常用材料与复合材料的比强度和比模量

材料名称 密度g/cm3 拉伸强度×104MPa d性模量×106MPa 比强度×106cm 比模量×109cm

钢 78 1010 2059 013 027

铝 28 461 735 017 026

钛 45 941 1118 021 025

玻璃钢 20 1040 392 053 021

碳纤维/环氧树脂 145 1471 1373

碳纤维/环氧树脂 16 1049 2354

芳纶纤维/环氧树脂 14 1373 785

硼纤维/环氧树脂 21 1353 2059

硼纤维/铝 265 981 1961 075 c2

二、纤维增强环氧树脂复合材料成型工艺简介

1、手糊成型 (hand lay up)

(1)概要 依次在模具表面上施加

脱模剂

胶衣

一层粘度为03-04PaS的中等活性液体热固性树脂(须待胶衣凝结后)

一层纤维增强材料(玻纤、芳纶、碳纤维),纤维增强材料有表面毡、无捻粗纱布(方格布)等几种。以手持辊子或刷子使树脂浸渍纤维增强材料,并驱除气泡,压实基层。铺层 *** 作反复多次,直到达到制品的设计厚度。

树脂因聚合反应,常温固化。可加热加速固化。

(2)原材料 F gb NG ^

树脂 不饱和聚酯树脂、已烯基酯树脂、环氧树脂、酚醛树脂等。

纤维 玻纤、碳纤、芳纶等。虽然厚的芳纶织物难于手工将树脂浸透,亦可用。

芯材 任意。

(3)优点

1)适合少量生产;

2)可室温成型,设备投资少,模具折旧费低;

3)可制造大型制品和型状复杂产品;

4)树脂和增强材料可自由组合,易进行材料设计;

5)可采用加强筋局部增强,可嵌入金属件;

6)可用胶衣层获得具有自由色彩和光泽的表面(如开模成型则一面不平滑);

7)玻纤含量较喷射成型高。

无捻粗纱布 50%左右

织物 35%-45%

短切原丝毡 30%-40%

(4)缺点

1)属于劳动密集型生产,产品质量由工人训练程度决定; ;

2)玻纤含量不可能太高;树脂需要粘度较低才易手工 *** 作,溶剂/苯乙烯量高,力学与热性能受限制;

3)手糊用树脂分子量低;通常可能较分子量高的树脂有害于人的健康和安全。

(5)典型产品

舰艇、风力发电机叶片、游乐设备、冷却塔壳体、建筑模型。

2、树脂传递成型(RTM)

(1)概要

RTM是一种闭模低压成型的方法。

将纤维增强材料置于上下模之间;合模并将模具夹紧;在压力下注射树脂;树脂固化后打开模具,取下产品。

树脂胶凝过程开始前,必须让树脂充满模腔,压力促使树脂快速传递到模个内,浸渍纤维材料。

RTM是一低压系统,树脂注射压力范围04-05MPa,当制造高纤维含量(体积比超过50%)的制品,如航空航天用零部件时,压力甚至达07MPa。

纤维增强材料有时可预先在一个模具内预成型大致形状(带粘结剂),再在第二个模具内注射成型。 为了提高树脂浸透纤维能力,可选择真空辅助注射(VARI-vacuum saaistedrsin injection)。

注意树脂一经将纤维材料浸透,树脂注口要封闭,以便树脂固化。注射与固化可在室温或加热条件下进行。模具可以复合材料与钢材料 制作。若采用加热工艺。宜用钢模。

(2)原材料

树脂:一般多用环氧、不饱和聚酯、乙烯基脂及酚醛;当加温时,高温树脂台双马列来酰亚胺树脂亦可用。

法国 Vetrotex公司开发了热塑性树脂RTM。

纤维:任意。常用玻纤连续毡、缝编材料(其纤维间的缝隙得于树脂传递)、无捻粗纱布;玻纤与热塑性塑料的复合纱及其织物与片材(法国Vetrotex商品名TWINTEX)。

芯材:不用蜂窝,因蜂窝空格全被树脂填满,压力会导致其破坏。可用耐溶剂发泡材料PU、PP、CL、VC等。

(3)优点

1)制品纤维含量可较高,未被树脂浸得部分非常少;

2)闭模成型,生产环境好;

3)劳动强度低,对工人技术熟练程度的要求也比手糊与喷射成型低;

4)制品两面光,可作有表面胶衣的制品,精度也比较高;

5)成型周期较短;

6)产品可大型化;

7)强度可按设计要求具有方向性;

8)可与芯村、嵌件一体成型;

9)相对注射设备与模具成本较低。

(4)缺点

1)不易制作较小产品;

2)因要承压,故模具较手糊与喷射工艺用模具要重和复杂,价位也高一些;

3)能有未被浸渍的材料,导致边角料浪费。

(5)典型产品

小型飞机与汽车零部件、客车座椅、仪表壳

3、纤维缠绕(FW)

(1)概要

通常采用直接无捻粗纱作为增强材料。粗纱排列在纱架上。粗纱自纱架上退绕,通过张力系统、树脂槽、绕丝嘴,由小车带动其往复移动并缠绕在回转的芯轴(模)上。纤维缠绕角度与纤维排列密度根据强度设计,并由芯轴(模)转速与小车往复速度之比,精确地控制。固化后将缠绕的复合材料制品脱模。

对某些两端密闭的产品不用脱模,芯模即包在复合材料产品内,作为内衬。

(2)原材料

树脂:任意。环氧、不饱和聚酯、乙烯基脂及酚醛树脂。

纤维:任意。无捻粗纱、缝编和无纺织物。生产管罐时,常用表面毡、短切原丝作为内衬材料。

芯材:可用。虽然复合材料制品通常是单一壳体,一般不用。

(3)优点

1)因为纤维迳直以合理的线形铺设,承担负荷,故复合材料制品的结构特性可非常高;

2)由于同内衬层组合,可制得耐腐蚀、耐压、耐热的制品;

3)可制造两端封闭的制品;

4)铺放材料快、经济、用无捻粗纱,材料费用低;

5)可采用树脂计量,然浸胶后的纤维通过挤胶或口模,控制树脂含量;

6)可大理生产和自动化;

7)机械成型,复合材料材质及方向性均匀,质量稳定。

(4)缺点

1)制品形状限于圆柱形或其它回转体;

2)纤维不易沿制品长度方向精确排列;

3)对于大型制品,芯模成本高;

4)成品外表不是“模制”的,不尽人意;

5)对于承受压力的制品,如选择树脂不合适或无内衬,就易发生渗漏。

(5)典型产品 '

管道、贮罐、气瓶(消防呼吸气瓶、压缩天然气瓶等)、固体火箭发动机壳体。

4、RIM(Reaction Injection Molding一反应注射成型)

(1)概要

将两种或两种以上的组分在混合区低压(05MPa)混合后,即在低压(05-15MPa)下注射到闭模中反应成型,此即为工艺过程。若组分一为多元醇,一为异氰酸酯,则反应生成聚氨酯 。为增加强度,可直接在一种组分内行加入磨碎玻纤原丝和(或)填料。弈可采用长纤维(如连续纤维毡、织物、复合毡、短切原丝等的预成型物等)增强,在注射前,将长纤维增强材料预先置模具内。用此法可得到高力学性能的制品。这种工艺称为SRIM(Structural Reaction Injection Molding-结构反应注射成型)。

(2)原材料

树脂:常用聚氨酯体系或聚氨酯/脲混合体系;亦可采用环氧、尼龙、聚酯等基本;

纤维:常用长02-04mm的磨碎玻璃纤维;

芯材:不用。

(3)优点

1)制造成本比热塑性塑料注射工艺低;

2)可制造大尺寸、开头复杂的产品;

3)固化快,适于快速生产。

(4)缺点

采用磨碎玻璃纤维增强原料费用高,荐用矿物复合材料取代之。

(5)主要产品

汽车仪表盘、保险杠、建筑门、窗、桌、沙发、电绝缘件。

5、拉挤成型 (Pultrusion)

(1)概要

主要采用玻璃纤维无捻粗纱(使用前预先放置在纱架上),它提供纵向(沿生产线方向)增强。

其它类型的增强有连续原丝毡、织物等,它们补充横向增强,表面毡则用于提高成品表面质量。树脂中可加入填料,改进型材料性能(如阻燃),并降低成本。

拉挤成型的程序是

1)使玻璃纤维增强材料浸渍树脂;

2)玻璃纤维预成型后进入加热模具内,进一步浸渍(挤胶)、基本树脂固化、复合材料定型;

3)将型材按要求长度切断。 现在已有变截面的、长度方向呈弧型的拉挤制品成型技术。 拉挤成型将增强材料浸渍树脂有两种方式:

胶槽浸渍法:通常采用此法,即将增强材料通过树脂槽浸胶,然后进入模具。此法设备便宜作业性好,适于不饱和聚酯树脂,乙烯基酯树脂。

注入浸渍法(图6):玻纤增强材料进入模具后,被注入模具内的树脂所浸渍。此法适于凝胶时间短、粘度高、生产附产物的树脂基体,如酚醛、环氧、双马来酰亚胺树脂。

(2)原材料

树脂:常用不饱和聚酯树脂、环氧树脂、乙烯基酯树脂、酚醛树脂;

纤维:拉挤用玻璃纤维无捻粗纱、连续毡、缝编毡、缝编复合毡、织物、玻纤表面毡、聚酯纤维表面毡等;

芯材:一般不用,现有以PU发泡材料为芯材,外为连续拉挤框型型材,作为保温墙板的。

(3)优点

1)典型拉挤速度05-2m/min,效率较高,适于大批量生产,制造长尺寸制品;

2)树脂含量可精确控制;

3)由于纤维呈纵向,且体种比可较高(40%-80%),因而型材轴向结构特性可非常好;

4)主要用无捻粗纱增强,原材料成本低,多种增强材料组合使用,可调节制品力学性能;

5)制品质量稳定,外观平滑。

(4)缺点

1)模具费用较高;

2)一般限于生产恒定横截面的制品。

(5)典型产品

建筑屋顶横梁、椽子、门窗框架型材、墙板、石油开采抽油杆、帐篷竿、梯子、桥梁、工具把、手机微波站罩壳、汽车板簧、传动轴、电缆管、光纤光缆芯、钓鱼竿、隔栅、汽车空调器罩、扩轨罩。 0}1x p V

6、真空袋法法成型(Vacuum bag process)

(1)概要 :

此法是手糊法与喷射法的延伸。将手糊或喷射好的积层在树脂的A阶段与模具在一 起,在积层上覆以橡胶袋,周边密封,在后用真空泵抽真空,积层从而受到不大于1个气压的压力,而被压实、成型。

(2)原材料

树脂:主要采用环氧树脂、酚醛树脂。不饱和聚酯树脂与乙烯基酯树脂则因真空泵将树脂中的苯乙烯(交联剂)过度抽出,可能会造成问题,故一般不用;

纤维:同手糊法;

芯材:任意。

(3)优点

1)采用普通的湿法铺层技术,通常可获得高纤维含量的制品;

2)可制造大尺寸产品;

3)产品两面光;

4)较湿法铺层浸胶孔隙率低;

5)由于压力,树脂流经结构纤维,纤维得以较好地浸渍树脂;

6)有利于 *** 作人员健康和安全;真空袋减少了固化时逸出的挥发性物质。

(4)缺点

1)额外的工艺过程增加了劳动力和袋材成本;

2)要求 *** 作人员有较高的技术熟练水平;

3)树脂混合和含量控制基本上仍然取决于 *** 作人员的技术;

4)生产效率不高。

(5)典型产品

艇、赛车、芯材粘结、飞机鼻锥雷达罩、机翼、方向舵。

7、树脂膜熔浸成型(RFI-Resin Film Infusion)

(1)概 要

将干强物与树脂片(树脂片系放在一层脱模纸上提供)交替铺放在模具内。铺层被真空袋包覆,藉真空泵抽真空,将干织物内空气抽出。然后加热,令树脂熔化并流浸已抽出空气的织物,然后经过一事实上时间即固化。

(2)原材料

树脂:一般仅用环氧树脂; ¬

纤维:任意;

芯材:许多种芯材都可以使用,由于工艺过程中温度高,对PVC泡沫需要专门处理,以免泡沫损坏。

(3)优点

1)空隙率低,可精确获得高的纤维含量;

2)铺层清洁,有利于健康和安全(似预浸);

3)可较预浸法成本低,此为主要的优点;

4)由于树脂仅能过织物厚度方向传递,故树脂未浸到白斑区可较SCRIMP(西曼复合材料公司树脂参入成型法—Seeman Composite Resin Infusion Molding Process)少。

(4)缺点

1)目前仅用于宇航工业,还未推广;

2)虽然宇航工业用高压釜系统产非总是需要,但加热室和真空袋系统对于复合材料固化,总是不可少的;

3)模具要求能经受树脂膜片的工艺温度(低温固化即需60-100ºC);

4)要求所用芯材能经受工艺温度和压力;

(5)典型产品

飞机雷达罩、舰艇声纳整流罩。

8、预浸料(高压釜)成型

(1)概要

预先在加热、加压或使用溶剂的条件下,将织物和(或)纤维预先用预催化树脂预浸渍。固化剂大多能在环境温度下,让预浸材料贮存几周或几个月,仍能保质使用。当要延长保持期,材料须在冷冻条件下贮存。树脂通常在环境温度下呈临界固态。故触摸预浸材料时有轻微的黏附感,象胶带似的。制作单向预浸渍材料的纤维直接由纱架下来,与树脂结合。预浸渍材料用手或机械铺于模具表面,通过真空袋抽真空,并通常加热到120-180ºC。使树脂重新流动,并最终固化。盛开附加压力通常藉助高压釜(实际上是一座压力加热罐)提供,它能对铺层施加达5个大气压的压力。

(2)原材料

树脂:通常用环氧树脂,不饱和聚酯树脂、酚醛树脂及高温树脂,如聚酰亚胺、氰酸酯、双马来酰亚胺树脂等;

纤维:任意。虽然由于在工艺过程中,高温分对芯材有些影响,需要采用某些专门的泡沫芯材。

(3)优点

1)预浸材料制造人员可精确地调整树脂/固化剂水平和树脂在纤维中的含量;可以可靠地得到高纤维含量。

2)材料于 *** 作人员十分安全,无碍健康, *** 作清洁;

3)单向带纤维成本最低,因为毋须将纤维预先转为织物的二次加工过程;

4)由于制造过程采用可渗透的高粘度树脂,树脂化学性能力学和热性能可以是最适宜的;

5)材料有效时间长(室温下可保质数月),这意味着可优化结构、复合材料易铺层;

6)可能实现自动化和节省劳动力。

(4)缺点

1)对于预浸织物,材料成本高;

2)通常要对高压釜固化复合材料制品,耗费大、作业慢、制品尺寸受限制;

3)模具需能承受作业温度;

4)芯材需要承受作业温度和压力。

(5)典型产品

飞机结构复合材料(如机翼和尾翼)、卫星与运载火箭结构件(太阳能电池基板、夹层结构板、卫星接口支架、火箭整流罩等)、赛车、运动器材(如网球拍、滑雪板等)。

9、低温 固化预浸料成型

(1)概要

低温固化预浸料完全按通常的预浸料方法制备,但树脂的化学性质使其得以在60-100ºC温度下固化。在60ºC时,材料可 *** 作保持期可小到限于1个星期,但亦可延长到几个月。树脂系统的流动截面适于采用真空袋压力,避免采用高压釜。

(2)材料 |

树脂:一般仅采用环氧树脂;

纤维:任意,同通常的预浸料;

芯材:任意,虽然一般 的PVC泡沫需要特别注意。

(3)优点

1)具有传统预浸料法所具备的(1)-(6)条优点;

2)模具材料较便宜,如木材亦可用,因其固化温度较低故;

3)可容易地制造大型结构。因为仅需真空袋压力;固化温度低,可采用简单的热空气循环加热室(经常就地建造大于制品的加热室 )

4)可采用普通的PVC泡沫芯材,略作处理即可;

5)能耗低。

(4)缺点

1)材料成本仍高于预浸织物;

2)需加热室和真空袋系统,以固化制品;

3)模具需能经受高于环境温度的温度(常用60-100ºC);

4)仍有能耗,因需高于环境温度固化。

(5)典型产品

高性能风力发电机叶片、赛艇、救生艇、火车用零部件。

10、SCRIMP,RIFT,VARTM

图11 SCRIMP,RIFT,VARTM示意图

(1)概要

SCRIMP(Seeman Composite Infusion Molding Process—西曼复合材料公司树脂渗透成型法),RIFT(Resin Infusion umder Flexibe Tooling—柔性模具树脂渗透法) ,VARTM(Vscuum Assisted Transfer Molding—真空辅助树脂传递成型)这三种工艺原理相似。

将织物作为干铺层材料入模内,如同RTM。然后覆以剥离保护层和缝编非结构织物。整个铺层用真空袋覆罩好。袋无渗漏后,让树脂流到积层。树脂很容易流经非结构织物而在整个铺层分布。SCRIMP法在真空袋与铺层之间可置加压模块,利于提高制作表观与结构密实度。

(2)材料

树脂:常和环氧树脂、不饱和聚酯和乙烯基酯树脂;

纤维:任意种类普通织物。这些工艺方法缝编材料很好用,因其间隙使得树脂快速流动;

芯材:除蜂窝外,各种芯材均可用。

(3)优点

1)同RTM,但制品仅一面光,不似RTM两面光;

2)由于模具一半是真空袋,主模具仅需较低强度,故模具成本甚低;

3)可制造大尺寸产品;

4)通常的湿法铺层工具可改进以用于这些成型法;

5)一次作业即可生产芯材结构。

(4)缺点

1)要完成好相对复杂的 *** 作过程;

2)树脂粘度必须非常低,限制了制品的力学性能;

3)铺层未浸到树脂而造成的废品浪费甚大;

4) SCRIMP的一些工艺要素已被专利所限。

(5)典型产品

小艇半成品、列车和卡车车身面板。

失落的骨架用玻璃纤维制作的模型来代替。

大部分大型的展示骨架也都是用质量较轻的玻璃纤维模型来代替,并将细金属条隐藏其中,以便支撑架构。重组的骨架是重塑某种恐龙生前模样的基本依据。爬行类、鸟类和哺乳动物的身体结构也可以用来参考。它们有助于指出恐龙内部器官的大小、外形、位置和构成腹部的肌肉情况。皮肤的构造则参照化石上的皮肤印痕。

扩展资料

人类发现恐龙化石的历史由来已久。早在发现恐龙之前,欧洲人就已经知道地下埋藏有许多奇形怪状的巨大骨骼化石。直到古生物学家曼特尔发现了恐龙并与鬣蜥进行了对比,科学界才初步确定这是一群类似于蜥蜴却早已灭绝的爬行动物。

人类如果不借助于化石,对恐龙这一神秘的物种就会一无所知。所以对恐龙的研究,也就是对恐龙化石的研究。恐龙化石大致可分为骨骼化石和生痕化石两种,主要保存在中生代时期形成的沉积岩中。

恐龙化石的形成是一个复杂、漫长而又神秘的过程,它牵涉到恐龙的死亡和灭绝,也与地球亿万年的风云变幻息息相关,而它的发现和挖掘也同样不易。科学家们通过各种手段寻找恐龙化石的蛛丝马迹,并借助现代高科技手段来复原化石和研究恐龙。

通过他们的工作,我们渐渐了解了恐龙的外形及生活习性,而来自世界各地关于恐龙的新发现以及新看法,一再修正我们原先认定的恐龙形象,使之更接近事实的真相。

参考资料来源:百度百科-恐龙

参考资料来源:百度百科-恐龙化石

聚乳酸纤维又称玉米纤维,简称PLA,也叫聚丙交酯(polylactide),属于聚酯家族。

它是由玉米等谷物原料经过发酵、聚合、纺丝制成的。

聚乳酸纤维是一种以乳酸为主要原料的高分子聚合物。聚乳酸由乳酸合成,而乳酸的原料是所有碳水化合物富集的物质,如粮食和有机废弃物。

可生物降解,在微生物作用下,分解成二氧化碳和水,在阳光下通过光合作用又会生成起始原料淀粉,而淀粉是乳酸的原料,这一循环,实现了资源的闭环循环可持续的利用。

聚乳酸纤维属于高强、中伸、低模型纤维。强度较高,达30-45cN/dtex,接近聚酯纤维。制成织物手感柔软、悬垂性很好,和聚酯纤维有相似的耐酸耐碱性能。

吸湿快干和保暖性能  聚乳酸纤维的回潮率为04%-06%,比大多数天然纤维和合成纤维(PET除)都低,吸湿性能较差,耐水性能较好。有独特的芯吸作用,使织物导湿快干,保暖。

虽然不是阻燃纤维,但却是常用纤维中阻燃性能较好的。燃烧性能是聚乙烯、聚丙烯纤维的1/3。

耐磨性差,影响服装领域应用,熔点低限制高温的使用。

由于聚乳酸纤维的物理性能优良、热稳定性好,比较轻、染色性好,有生物相容性,因此用途十分广泛。目前,它的用途主要是医用和服装等领域

在医疗方面,主要是手术缝合线,既能满足强度的需要,又能缓慢被人体吸收,免除了病人拆线的麻烦和痛苦。经过拉伸的高分子量聚乳酸材料,或聚乳酸纤维增强的复合材料,不仅可以作为骨结合部固定材料,而且可作为组织缺损部位增强材料。还可以用作绷带、纱布、脱脂棉、妇女卫生巾、婴儿尿布。

在服装方面,可以制成纱线、织物、编织物、非织造布。有良好的可染性和生物相容性。织物有丝般的光泽和手感、不刺激皮肤、对人身体健康。有优异的悬垂性和很好的爽滑性,穿着舒适,尤其适合内衣和运动衣。

恐龙死后,尸体腐烂,只剩下骨骼,因种种原因沉入地下,经过地质岩层的变化,骨骼渐渐石化,成为化石。再次因地质变迁而浮到地面表层。最终被发掘。中国的化石产量较多,被誉为恐龙之乡。永川龙、小盗龙、马门溪龙的化石最为著名。

恐龙化石的类别恐龙残体如牙齿和骨骼化石是我们最熟悉的化石,这些都被称之为体躯化石;至于恐龙的遗迹也有可能形成化石保存下来,这些则被称为生痕化石。这些化石是我们研究恐龙的主要依据,据此我们可以推断出恐龙的类型、数量、大小等等情况。

扩展资料:

只有少数相当特殊的地质环境能够将化石保存完好,最常见的是质地细致的沉积岩。而恐龙化石由于年代久远,保存更不容易。现在所发现的恐龙化石埋藏地主要有德国的索伦候芬、蒙古戈壁沙漠的火焰崖、中国云南的禄丰、中国山东诸城等。

蒙古戈壁沙漠的火焰崖保存了很多白垩纪晚期的动物化石,包括原角龙、窃蛋龙和迅掠龙等。从20世纪20年代发现火焰崖蕴藏着化石以来,人们已经在这里挖掘了不少闻名世界的恐龙标本。

中国云南禄丰县恐龙山方圆10平方千米的地区,是闻名于世的恐龙之乡。1938年考古学家在这里首次发现完整的恐龙化石,之后陆续挖掘出数十具恐龙化石。经鉴定,其中有24属30多种恐龙,是世界上最原始、最古老、最丰富、最完整的脊椎动物化石群。

以上就是关于玻璃纤维短切毡工艺流程怎么写全部的内容,包括:玻璃纤维短切毡工艺流程怎么写、科学家把恐龙化石还原成完整的恐龙骨架,用的是什么、聚乳酸纤维的介绍等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/zz/10180707.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-06
下一篇 2023-05-06

发表评论

登录后才能评论

评论列表(0条)

保存