Linux内核参数之nf_conntrack

Linux内核参数之nf_conntrack,第1张

近日线下测试环境的一个cloudstack计算节点上的虚拟机出现频繁的丢包情况,经过排查日志发现这个计算节点的包被丢弃,日志信息如下:

查询这个错误是因为连接数过高引起的,可以调整nf_conntrack内核参数进行解决。

既然找到了原因,那么我们可以查看并且优化相关参数,默认的netnetfilternf_conntrack_max是65536,果然我们机器是默认值。

那么这个值设置多少合理呢?我在网上找到一个计算公式,我们服务器是512G内存64位系统,计算格式如下:

优化内核参数。

nf_conntrack还有些相关的参数可以进行优化,这些参数我们在之前已经做过优化了,如下:

TcpTimedWaitDelay :确定 TCP/IP 可释放已关闭连接并重用其资源前,必须经过的时间。关闭和释放之间的此时间间隔通称 TIME_WAIT 状态或两倍最大段生命周期(2MSL)状态。此时间期间,重新打开到客户机和服务器的连接的成本少于建立新连接。减少此条目的值允许 TCP/IP 更快地释放已关闭的连接,为新连接提供更多资源。如果运行的应用程序需要快速释放和创建新连接,而且由于 TIME_WAIT 中存在很多连接,导致低吞吐量,则调整此参数。

MaxUserPort :确定在应用程序从系统请求可用用户端口时,TCP/IP 可指定的最高端口号。 如何查看或设置: 使用 regedit 命令访问 HKEY_LOCAL_MACHINE/SYSTEM/CurrentControlSet/ Services/TCPIP/Parameters 注册表子键并创建名为 MaxUserPort 的新 REG_DWORD 值。 停止并重新启动系统。 缺省值:无 建议值:至少十进制 32768。 注:现在 Windows NT 或 Windows 2000 *** 作系统上调整 WebSphere Application Server 时,同时使用这两个参数。

将以下代码,保存为reg文件,在服务器上双击导入注册表即可。

本文先介绍了cpu上下文切换的基础知识,以及上下文切换的类型(进程,线程等切换)。然后介绍了如何查看cpu切换次数的工具和指标的解释。同时对日常分析种cpu过高的情况下如何分析和定位的方法做了一定的介绍,使用一个简单的案例进行分析,先用top,pidstat等工具找出占用过高的进程id,然后通过分析到底是用户态cpu过高,还是内核态cpu过高,并用perf 定位到具体的调用函数。(来自极客时间课程学习笔记)

1、多任务竞争CPU,cpu变换任务的时候进行CPU上下文切换(context switch)。CPU执行任务有4种方式:进程、线程、或者硬件通过触发信号导致中断的调用。

2、当切换任务的时候,需要记录任务当前的状态和获取下一任务的信息和地址(指针),这就是上下文的内容。因此,上下文是指某一时间点CPU寄存器(CPU register)和程序计数器(PC)的内容, 广义上还包括内存中进程的虚拟地址映射信息

3、上下文切换的过程:

4、根据任务的执行形式,相应的下上文切换,有进程上下文切换、线程上下文切换、以及中断上下文切换三类。

5、进程和线程的区别:
进程是资源分配和执行的基本单位;线程是任务调度和运行的基本单位。线程没有资源,进程给指针提供虚拟内存、栈、变量等共享资源,而线程可以共享进程的资源。

6、进程上下文切换:是指从一个进程切换到另一个进程。

(1)进程运行态为内核运行态和进程运行态。内核空间态资源包括内核的堆栈、寄存器等;用户空间态资源包括虚拟内存、栈、变量、正文、数据等

(2)系统调用(软中断)在内核态完成的,需要进行2次CPU上下文切换(用户空间-->内核空间-->用户空间),不涉及用户态资源,也不会切换进程。

(3)进程是由内核来管理和调度的,进程的切换只能发生在内核态。所以,进程的上下文不仅包括了用户空间的资源,也包括内核空间资源。

(4)进程的上下文切换过程:

(5)、下列将会触发进程上下文切换的场景:

7、线程上下文切换:

8、中断上下文切换
快速响应硬件的事件,中断处理会打断进程的正常调度和执行。同一CPU内,硬件中断优先级高于进程。切换过程类似于系统调用的时候,不涉及到用户运行态资源。但大量的中断上下文切换同样可能引发性能问题。

重点关注信息:

系统的就绪队列过长,也就是正在运行和等待 CPU 的进程数过多,导致了大量的上下文切换,而上下文切换又导致了系统 CPU 的占用率升高。

这个结果中有两列内容是我们的重点关注对象。一个是 cswch ,表示每秒自愿上下文切换(voluntary context switches)的次数,另一个则是 nvcswch ,表示每秒非自愿上下文切换(non voluntary context switches)的次数。

linux的中断使用情况可以从 /proc/interrupts 这个只读文件中读取。/proc 实际上是 Linux 的一个虚拟文件系统,用于内核空间与用户空间之间的通信。/proc/interrupts 就是这种通信机制的一部分,提供了一个只读的中断使用情况。

重调度中断(RES),这个中断类型表示,唤醒空闲状态的 CPU 来调度新的任务运行。这是多处理器系统(SMP)中,调度器用来分散任务到不同 CPU 的机制,通常也被称为处理器间中断(Inter-Processor Interrupts,IPI)。

这个数值其实取决于系统本身的 CPU 性能。如果系统的上下文切换次数比较稳定,那么从数百到一万以内,都应该算是正常的。但当上下文切换次数超过一万次,或者切换次数出现数量级的增长时,就很可能已经出现了性能问题。这时,需要根据上下文切换的类型,再做具体分析。

比方说:

首先通过uptime查看系统负载,然后使用mpstat结合pidstat来初步判断到底是cpu计算量大还是进程争抢过大或者是io过多,接着使用vmstat分析切换次数,以及切换类型,来进一步判断到底是io过多导致问题还是进程争抢激烈导致问题。

CPU 使用率相关的重要指标:

性能分析工具给出的都是间隔一段时间的平均 CPU 使用率,所以要注意间隔时间的设置,特别是用多个工具对比分析时,你一定要保证它们用的是相同的间隔时间。比如,对比一下 top 和 ps 这两个工具报告的 CPU 使用率,默认的结果很可能不一样,因为 top 默认使用 3 秒时间间隔,而 ps 使用的却是进程的整个生命周期。

top 和 ps 是最常用的性能分析工具:

这个输出结果中,第三行 %Cpu 就是系统的 CPU 使用率,top 默认显示的是所有 CPU 的平均值,这个时候你只需要按下数字 1 ,就可以切换到每个 CPU 的使用率了。继续往下看,空白行之后是进程的实时信息,每个进程都有一个 %CPU 列,表示进程的 CPU 使用率。它是用户态和内核态 CPU 使用率的总和,包括进程用户空间使用的 CPU、通过系统调用执行的内核空间 CPU 、以及在就绪队列等待运行的 CPU。在虚拟化环境中,它还包括了运行虚拟机占用的 CPU。

预先安装 stress 和 sysstat 包,如 apt install stress sysstat。

stress 是一个 Linux 系统压力测试工具,这里我们用作异常进程模拟平均负载升高的场景。而 sysstat 包含了常用的 Linux 性能工具,用来监控和分析系统的性能。我们的案例会用到这个包的两个命令 mpstat 和 pidstat。

下面的 pidstat 命令,就间隔 1 秒展示了进程的 5 组 CPU 使用率,

包括:

perf 是 Linux 2631 以后内置的性能分析工具。它以性能事件采样为基础,不仅可以分析系统的各种事件和内核性能,还可以用来分析指定应用程序的性能问题。

第一种常见用法是 perf top,类似于 top,它能够实时显示占用 CPU 时钟最多的函数或者指令,因此可以用来查找热点函数,使用界面如下所示:

输出结果中,第一行包含三个数据,分别是采样数(Samples)如2K、事件类型(event)如cpu-clock:pppH和事件总数量(Event count)如:371909314。

第二种常见用法,也就是 perf record 和 perf report。 perf top 虽然实时展示了系统的性能信息,但它的缺点是并不保存数据,也就无法用于离线或者后续的分析。而 perf record 则提供了保存数据的功能,保存后的数据,需要你用 perf report 解析展示。

1启动docker 运行进程:

2ab工具测试服务器性能
ab(apache bench)是一个常用的 >

最近对离线数仓体系进行了扩容和架构改造,也算是一波三折,出了很多小插曲,有一些改进点对我们来说也是真空地带,通过对比和模拟压测总算是得到了预期的结果,这方面尤其值得一提的是郭运凯同学的敬业,很多前置的工作,优化和应用压测的工作都是他完成的。 

整体来说,整个事情的背景是因为服务器硬件过保,刚好借着过保服务器替换的机会来做集群架构的优化和改造。 


1集群架构改造的目标

在之前也总结过目前存在的一些潜在问题,也是本次部署架构改进的目标:

1)之前 的GP segment数量设计过度 ,因为资源限制,过多考虑了功能和性能,对于集群的稳定性和资源平衡性考虑有所欠缺,在每个物理机节点上部署了10个Primary,10个Mirror,一旦1个服务器节点不可用,整个集群几乎无法支撑业务。


2)GP集群 的存储资源和性能的平衡不够 ,GP存储基于RAID-5,如果出现坏盘,磁盘重构的代价比较高,而且重构期间如果再出现坏盘,就会非常被动,而且对于离线数仓的数据质量要求较高,存储容量相对不是很大,所以在存储容量和性能的综合之上,我们选择了RAID-10。


3)集 群的异常场景的恢复需要完善, 集群在异常情况下(如服务器异常宕机,数据节点不可用,服务器后续过保实现节点滚动替换)的故障恢复场景测试不够充分,导致在一些迁移和改造中,相对底气不足,存在一些知识盲区。


4)集群版本过 ,功能和性能上存在改进空间。毕竟这个集群是4年前的版本,底层的PG节点的版本也比较旧了,在功能上和性能上都有一定的期望,至少能够与时俱进。


5) *** 作系统版本升 ,之前的 *** 作系统是基于CentOS6,至少需要适配CentOS 7 。


6)集群TPCH 压测验收 ,集群在完成部署之后,需要做一次整体的TPCH压测验收,如果存在明显的问题需要不断调整配置和架构,使得达到预期的性能目标。


此外在应用层面也有一些考虑,总而言之,是希望能够解决绝大多数的痛点问题,无论是在系统层面,还是应用层面,都能上一个台阶。


2集群规划设计的选型和思考

明确了目标,就是拆分任务来规划设计了,在规划设计方面主要有如下的几个问题:


1)Greenplum的版本选择 ,目前有两个主要的版本类别,一个是开源版(Open Source distribution)和Pivotal官方版,它们的其中一个差异就是官方版需要注册,签署协议,在此基础上还有GPCC等工具可以用,而开源版本可以实现源码编译或者rpm安装,无法配置GPCC。综合来看,我们选择了 开源版本的6162 ,这其中也询问了一些行业朋友,特意选择了几个涉及稳定性bug修复的版本。


2)数据集市的技术选型 ,在数据集市的技术选型方面起初我是比较坚持基于PostgreSQL的模式,而业务侧是希望对于一些较为复杂的逻辑能够通过GP去支撑,一来二去之后,加上我咨询了一些行业朋友的意见,是可以选择基于GP的方案,于是我们就抱着试一试的方式做了压测,所以数据仓库和和数据集市会是两个不同规模体量的GP集群来支撑。


3)GP的容量规划 ,因为之前的节点设计有些过度,所以在数量上我们做了缩减,每台服务器部署12个segment节点,比如一共12台服务器,其中有10台服务器是Segment节点,每台上面部署了6个Primary,6个Mirror,另外2台部署了Master和Standby,就是即(6+6)10+2,整体的配置情况类似下面的模式。

4)部署架构方案选型 ,部署架构想起来比较容易,但是落实起来有很多的考虑细节,起初考虑GP的Master和Standby节点如果混用还是能够节省一些资源,所以设计的数据仓库和数据集市的部署架构是这样考虑的,但是从走入部署阶段之后,很快就发现这种交叉部署的模式是不可行的,或者说有一些复杂度。


除此之外,在单个GP集群的部署架构层面,还有4类方案考虑。

  方案1 :Master,Standby和segment混合部署
  方案2 :Master,Standby和segment独立部署,整个集群的节点数会少一些
  方案3 :Segment独立部署,Master,Standby虚拟机部署
  方案4 :最小化单节点集群部署(这是数据集市最保底的方案)  

这方面存在较大的发挥空间,而且总体来说这种验证磨合的成本也相对比较高,实践给我上了一课, 越是想走捷径,越是会让你走一些弯路 ,而且有些时候的优化其实我也不知道改怎么往下走,感觉已经无路可走,所以上面这4种方案其实我们都做了相关的测试和验证。


3集群架构的详细设计和实践

1)设计详细的部署架构图

在整体规划之上,我设计了如下的部署架构图,每个服务器节点有6个Primary,6个Mirror,服务器两两映射。



2)内核参数优化

按照官方文档的建议和具体的配置情况,我们对内核参数做了如下的配置:

vmswappiness=10
vmzone_reclaim_mode = 0
vmdirty_expire_centisecs = 500
vmdirty_writeback_centisecs = 100
vmdirty_background_ratio = 0 # See System Memory
vmdirty_ratio = 0
vmdirty_background_bytes = 1610612736
vmdirty_bytes = 4294967296
vmmin_free_kbytes = 3943084
vmovercommit_memory=2
kernelsem = 500 2048000 200 4096


4集群部署步骤

1)首先是配置/etc/hosts,需要把所有节点的IP和主机名都整理出来。 

2)配置用户,很常规的步骤

groupadd  gpadmin

useradd gpadmin -g gpadmin

passwd gpadmin

3)配置sysctlconf和资源配置

4)使用rpm模式安装

# yum install -y apr apr-util bzip2 krb5-devel  zip

# rpm -ivh open-source-greenplum-db-6162-rhel7-x86_64rpm

5)配置两个host文件,也是为了后面进行统一部署方便,在此建议先开启gpadmin的sudo权限,可以通过gpssh处理一些较为复杂的批量 *** 作

6)通过gpssh-exkeys来打通ssh信任关系,这里需要吐槽这个ssh互信,端口还得是22,否则处理起来很麻烦,需要修改/etc/ssh/sshd_config文件

gpssh-exkeys -f hostlist

7)较为复杂的一步是打包master的Greenplum-db-6162软件,然后分发到各个segment机器中,整个过程涉及文件打包,批量传输和配置,可以借助gpscp和gpssh,比如gpscp传输文件,如下的命令会传输到/tmp目录下

gpscp -f /usr/local/greenplum-db/conf/hostlist /tmp/greenplum-db-6162targz =:/tmp

或者说在每台服务器上面直接rpm -ivh安装也可以。

8)Master节点需要单独配置相关的目录,而Segment节点的目录可以提前规划好,比如我们把Primary和Mirror放在不同的分区。 

mkdir -p /data1/gpdata/gpdatap1

mkdir -p /data1/gpdata/gpdatap2

mkdir -p /data2/gpdata/gpdatam1

mkdir -p /data2/gpdata/gpdatam2

9)整个过程里最关键的就是gpinitsystem_config配置了,因为Segment节点的ID配置和命名,端口区间都是根据一定的规则来动态生成的,所以对于目录的配置需要额外注意。

10)部署GP集群最关键的命令是

gpinitsystem -c gpinitsystem_config -s standby_hostname


其中文件gpinitsystem_config的主要内容如下:

MASTER_HOSTNAME=xxxx

declare -a DATA_DIRECTORY=(/data1/gpdata/gpdatap1  /data1/gpdata/gpdatap2 /data1/gpdata/gpdatap3 /data1/gpdata/gpdatap4 /data1/gpdata/gpdatap5 /data1/gpdata/gpdatap6)

TRUSTED_SHELL=ssh

declare -a MIRROR_DATA_DIRECTORY=(/data2/gpdata/gpdatam1  /data2/gpdata/gpdatam2 /data2/gpdata/gpdatam3 /data2/gpdata/gpdatam4 /data2/gpdata/gpdatam5 /data2/gpdata/gpdatam6)

MACHINE_LIST_FILE=/usr/local/greenplum-db/conf/seg_hosts

整个过程大约5分钟~10分钟以内会完成,在部署过程中建议要查看后端的日志查看是否有异常,异常情况下的体验不是很好,可能会白等。


5集群部署问题梳理

集群部署中还是有很多细节的问题,太基础的就不提了,基本上就是配置,目录权限等问题,我提另外几个:

1) 资源配置问题 ,如果/etc/security/limitsconf的资源配置不足会在安装时有如下的警告:


2) 网络问题 ,集群部署完成后可以正常 *** 作,但是在查询数据的时候会抛出错误,比如SQL是这样的,看起来很简单:select count() from customer,但是会抛出如下的错误:

这个问题的主要原因还是和防火墙配置相关,其实不光需要配置INPUT的权限,还需要配置OUTPUT的权限。 

对于数据节点可以开放略大的权限,如:

入口的配置:

-A INPUT -p all -s xxxxx    -j ACCEPT

出口的配置:

-A OUTPUT -p all -s xxxxx    -j ACCEPT


3)网络配置问题 ,这个问题比较诡异的是,报错和上面是一样的,但是在排除了防火墙配置后,select count() from customer;这样的语句是可以执行的,但是执行的等待时间较长,比如表lineitem这表比较大,过亿的数据量,,在10个物理节点时,查询响应时间是10秒,但是4个物理节点,查询响应时间是在90秒,总体删感觉说不过去。

为了排查网络问题,使用gpcheckperf等工具也做过测试,4节点和10节点的基础配置也是相同的。

gpcheckperf -f /usr/local/greenplum-db/conf/seg_hosts -r N -d /tmp

$ cat /etc/hosts
127001   localhost localhostlocaldomain localhost4 localhost4localdomain4
::1      localhost localhostlocaldomain localhost6 localhost6localdomain6
#127001    test-dbs-gp-128-230
xxxxx128238 test-dbs-gp-svr-128-238
xxxxx128239 test-dbs-gp-svr-128-239

其中127001的这个配置在segment和Master,Standby混部的情况是存在问题的,修正后就没问题了,这个关键的问题也是郭运凯同学发现的。


5集群故障恢复的测试

集群的故障测试是本次架构设计中的重点内容,所以这一块也是跃跃欲试。

整体上我们包含两个场景,服务器宕机修复后的集群恢复和服务器不可用时的恢复方式。

第一种场景相对比较简单,就是让Segment节点重新加入集群,并且在集群层面将Primary和Mirror的角色互换,而第二种场景相对时间较长一些,主要原因是需要重构数据节点,这个代价基本就就是PG层面的数据恢复了,为了整个测试和恢复能够完整模拟,我们采用了类似的恢复方式,比如宕机修复使用了服务器重启来替代,而服务器不可用则使用了清理数据目录,类似于一台新配置机器的模式。

1)服务器宕机修复后集群恢复

select from gp_segment_configuration where status!='u';

gprecoverseg  -o /recov

gprecoverseg -r

select from gp_segment_configuration where status='u'


2)服务器不可用时集群恢复

重构数据节点的过程中,总体来看网络带宽还是使用很充分的。

select from gp_segment_configuration where status='u'

select from gp_segment_configuration where status='u' and role!=preferred_role;

gprecoverseg -r

select from gp_segment_configuration where status='u' and role!=preferred_role;


经过测试,重启节点到数据修复,近50G数据耗时3分钟左右

6集群优化问题梳理

1)部署架构优化和迭代

对于优化问题,是本次测试中尤其关注,而且争议较多的部分。 

首先在做完初步选型后,数仓体系的部署相对是比较顺利的,采用的是第一套方案。

数据集市的集群部分因为节点相对较少,所以就选用了第二套方案

实际测试的过程,因为配置问题导致TPCH的结果没有达到预期。

所以这个阶段也产生了一些疑问和怀疑,一种就是折回第一种方案,但是节点数会少很多,要不就是第三种采用虚拟机的模式部署,最保底的方案则是单节点部署,当然这是最牵强的方案。

这个阶段确实很难,而在上面提到的修复了配置之后,集群好像突然开悟了一般,性能表现不错,很快就完成了100G和1T数据量的TPCH测试。

在后续的改造中,我们也尝试了第三套方案,基于虚拟机的模式,通过测试发现,远没有我们预期的那么理想,在同样的数据节点下,Master和Standby采用物理机和虚拟机,性能差异非常大,这个是出乎我们预料的。比如同样的SQL,方案3执行需要2秒,而方案2则需要80秒,这个差异我们对比了很多指标,最后我个人理解差异还是在网卡部分。

所以经过对比后,还是选择了方案2的混合部署模式。

2)SQL性能优化的分析

此外整个过程的TPCH也为集群的性能表现提供了参考。比如方案2的混合部署模式下,有一条SQL需要18秒,但是相比同类型的集群,可能就只需要2秒钟左右,这块显然是存在问题的。 

在排除了系统配置,硬件配置的差异之后,经典的解决办法还是查看执行计划。

性能较差的SQL执行计划:

# explain analyze select count()from customer;

QUERY PLAN   

Aggregate  (cost=00043100 rows=1 width=8) (actual time=2479291624792916 rows=1 loops=1)

   ->  Gather Motion 36:1  (slice1; segments: 36)  (cost=00043100 rows=1 width=1) (actual time=325516489394 rows=150000000 loops=1)

         ->  Seq Scan on customer  (cost=00043100 rows=1 width=1) (actual time=07801267878 rows=4172607 loops=1)

Planning time: 4466 ms

   (slice0)    Executor memory: 680K bytes

   (slice1)    Executor memory: 218K bytes avg x 36 workers, 218K bytes max (seg0)

Memory used:  2457600kB

Optimizer: Pivotal Optimizer (GPORCA)

Execution time: 24832611 ms

(9 rows)


Time: 24892500 ms


性能较好的SQL执行计划:

# explain analyze select count()from customer;                            

QUERY PLAN

Aggregate  (cost=00084208 rows=1 width=8) (actual time=15193111519311 rows=1 loops=1)

   ->  Gather Motion 36:1  (slice1; segments: 36)  (cost=00084208 rows=1 width=8) (actual time=6347871519214 rows=36 loops=1)

         ->  Aggregate  (cost=00084208 rows=1 width=8) (actual time=14732961473296 rows=1 loops=1)

               ->  Seq Scan on customer  (cost=00083433 rows=4166667 width=1) (actual time=0758438319 rows=4172607 loops=1)

Planning time: 5033 ms

   (slice0)    Executor memory: 176K bytes

   (slice1)    Executor memory: 234K bytes avg x 36 workers, 234K bytes max (seg0)

Memory used:  2457600kB

Optimizer: Pivotal Optimizer (GPORCA)

Execution time: 1543611 ms

(10 rows)


Time: 1549324 ms

很明显执行计划是被误导了,而误导的因素则是基于统计信息,这个问题的修复很简单:

analyze customer;

但是深究原因,则是在压测时,先是使用了100G压测,压测完之后保留了原来的表结构,直接导入了1T的数据量,导致执行计划这块没有更新。

3)集群配置优化

此外也做了一些集群配置层面的优化,比如对缓存做了调整。 

gpconfig -c statement_mem -m 2457600 -v 2457600

gpconfig -c gp_vmem_protect_limit -m 32000 -v 32000


7集群优化数据

最后来感受下集群的性能:

1)10个物理节点,(6+6)10+2

tpch_1t=# iming on

Timing is on

tpch_1t=# select count()from customer;

   count   

-----------

150000000

(1 row)

Time: 1235801 ms


tpch_1t=# select count()from lineitem;

   count    

------------

5999989709

(1 row)

Time: 10661756 ms


2)6个物理节点,(6+6)6

# select count()from customer;
   count   
-----------
 150000000
(1 row)
Time: 1346833 ms


# select count()from lineitem;
   count    
------------
 5999989709
(1 row)
Time: 18145092 ms


3)4个物理节点,(6+6)4

# select count()from customer;
   count   
-----------
 150000000
(1 row)
Time: 1531621 ms

# select count()from lineitem;
   count    
------------
 5999989709
(1 row)
Time: 25072501 ms

4)TPCH在不通架构模式下的性能比对 ,有19个查询模型,有个别SQL逻辑过于复杂暂时忽略,也是郭运凯同学整理的列表。

在1T基准下的基准测试表现:

您好,很高兴为您解答。
在现有文件系统下进行优化:
linux内核和各个文件系统采用了几个优化方案来提升磁盘访问速度。但这些优化方案需要在我们的服务器设计中进行配合才能得到充分发挥。
文件系统缓存
linux内核会将大部分空闲内存交给虚拟文件系统,来作为文件缓存,叫做page cache。在内存不足时,这部分内存会采用lru算法进行淘汰。通过free命令查看内存,显示为cached的部分就是文件缓存了。
如何针对性优化:
lru并不是一个优秀淘汰算法,lru最大的优势是普适性好,在各种使用场景下都能起到一定的效果。如果能找到当前使用场景下,文件被访问的统计特征,针 对性的写一个淘汰算法,可以大幅提升文件缓存的命中率。对于>

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/zz/12759761.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-27
下一篇 2023-05-27

发表评论

登录后才能评论

评论列表(0条)

保存