x86服务器硬件架构及原理

x86服务器硬件架构及原理,第1张

x86服务器使用CISC架构的处理器,类似于人们触摸的台式笔记本电脑。随着英特尔Xeon处理器的不断改进,有传言称x86服务器将占领小型计算机市场。
X86是一种基于CISC(复杂指令集)体系结构的处理器。大多数CPU制造商(如Amd,Intel)生产这种处理器。与具有精简指令结构计算机(RISC)体系结构的PowerPC(如苹果计算机)不同,CISC处理器按顺序执行程序指令,并按顺序执行每个指令中的 *** 作。
顺序执行的优点是控制简单,但计算机各部分的利用率不高,执行速度慢,RISC结构相对简单。它只需要硬件来执行有限数量的最常用指令。大多数复杂的 *** 作使用复杂的编译器技术,由简单的指令组成。它主要用于高端服务器,特别是使用RISC指令系统CPU的高端服务器。

一种是将服务器托管到机房,非常省心;
一种方法就是找电信接个专网,独立的ip,然后让网管绑定域名就可以了。像qq公司就是类似这种,他们有自已的机房
当然你自己在服务器上还得装很多软件
比如网站需要的运行环境:iis60
net运行框架framewor
数据库:mysql或者sqlserver
文件上传下载软件:leapftp
还有服务器的安全你得设置好,很多问题的,不是那么简单的事情

服务器分塔式、机架式和刀片式这三种结构来划分服务器,服务器的外形为什么会有这样的划分呢?主要原因就是具体的应用环境不同,塔式服务器长得跟我们平时用的台式机一样,占用空间比较大,一般是一些小型企业自己使用自己维护;而机架式服务器长得就像卧着的台式机,可以一台一台的放到固定机架上,因此而得名,它可以拿去专业的服务器托管提供商那里进行托管,这样每年只需支付一定的托管费,就免去了自己管理服务器的诸多不便;而刀片服务器是近几年才比较流行的一种服务器架构,它非常薄,可以一片一片的叠放在机柜上,通过群集技术进行协同运算,能够处理大量的任务,特别适合分布式服务,如作为WEB服务器。

近期正在探索前端、后端、系统端各类常用组件与工具,对其一些常见的组件进行再次整理一下,形成标准化组件专题,后续该专题将包含各类语言中的一些常用组件。欢迎大家进行持续关注。

本节我们继续进行分享使用Golang开发游戏可以使用的相关插件,本节我们分享一个游戏服务器架构 gonet
整体架构如下:
目前这个仓库关注度尚可,具备很多的现成的模块可以直接使用,有兴趣的小伙伴们可以关注一下这个组件,属于国内作者开发的,有其相关的小圈子,详细可以查看 README

从系统架构来看,目前的商用服务器大体可以分为三类,即对称多处理器结构(SMP:SymmetricMulti-Processor),非一致存储访问结构(NUMA:Non-UniformMemoryAccess),以及海量并行处理结构(MPP:MassiveParallelProcessing)。

一、SMP(SymmetricMulti-Processor)

所谓对称多处理器结构,是指服务器中多个CPU对称工作,无主次或从属关系。各CPU共享相同的物理内存,每个CPU访问内存中的任何地址所需时间是相同的,因此SMP也被称为一致存储器访问结构(UMA:UniformMemoryAccess)。对SMP服务器进行扩展的方式包括增加内存、使用更快的CPU、增加CPU、扩充I/O(槽口数与总线数)以及添加更多的外部设备(通常是磁盘存储)。

SMP服务器的主要特征是共享,系统中所有资源(CPU、内存、I/O等)都是共享的。也正是由于这种特征,导致了SMP服务器的主要问题,那就是它的扩展能力非常有限。对于SMP服务器而言,每一个共享的环节都可能造成SMP服务器扩展时的瓶颈,而最受限制的则是内存。由于每个CPU必须通过相同的内存总线访问相同的内存资源,因此随着CPU数量的增加,内存访问冲突将迅速增加,最终会造成CPU资源的浪费,使CPU性能的有效性大大降低。实验证明,SMP服务器CPU利用率最好的情况是2至4个CPU。

二、NUMA(Non-UniformMemoryAccess)

由于SMP在扩展能力上的限制,人们开始探究如何进行有效地扩展从而构建大型系统的技术,NUMA就是这种努力下的结果之一。利用NUMA技术,可以把几十个CPU(甚至上百个CPU)组合在一个服务器内。

NUMA服务器的基本特征是具有多个CPU模块,每个CPU模块由多个CPU(如4个)组成,并且具有独立的本地内存、I/O槽口等。由于其节点之间可以通过互联模块(如称为CrossbarSwitch)进行连接和信息交互,因此每个CPU可以访问整个系统的内存(这是NUMA系统与MPP系统的重要差别)。显然,访问本地内存的速度将远远高于访问远地内存(系统内其它节点的内存)的速度,这也是非一致存储访问NUMA的由来。由于这个特点,为了更好地发挥系统性能,开发应用程序时需要尽量减少不同CPU模块之间的信息交互。利用NUMA技术,可以较好地解决原来SMP系统的扩展问题,在一个物理服务器内可以支持上百个CPU。比较典型的NUMA服务器的例子包括HP的Superdome、SUN15K、IBMp690等。

但NUMA技术同样有一定缺陷,由于访问远地内存的延时远远超过本地内存,因此当CPU数量增加时,系统性能无法线性增加。如HP公司发布Superdome服务器时,曾公布了它与HP其它UNIX服务器的相对性能值,结果发现,64路CPU的Superdome(NUMA结构)的相对性能值是20,而8路N4000(共享的SMP结构)的相对性能值是63。从这个结果可以看到,8倍数量的CPU换来的只是3倍性能的提升。

三、MPP(MassiveParallelProcessing)

和NUMA不同,MPP提供了另外一种进行系统扩展的方式,它由多个SMP服务器通过一定的节点互联网络进行连接,协同工作,完成相同的任务,从用户的角度来看是一个服务器系统。其基本特征是由多个SMP服务器(每个SMP服务器称节点)通过节点互联网络连接而成,每个节点只访问自己的本地资源(内存、存储等),是一种完全无共享(ShareNothing)结构,因而扩展能力最好,理论上其扩展无限制,目前的技术可实现512个节点互联,数千个CPU。目前业界对节点互联网络暂无标准,如NCR的Bynet,IBM的SPSwitch,它们都采用了不同的内部实现机制。但节点互联网仅供MPP服务器内部使用,对用户而言是透明的。

在MPP系统中,每个SMP节点也可以运行自己的 *** 作系统、数据库等。但和NUMA不同的是,它不存在异地内存访问的问题。换言之,每个节点内的CPU不能访问另一个节点的内存。节点之间的信息交互是通过节点互联网络实现的,这个过程一般称为数据重分配(DataRedistribution)。

但是MPP服务器需要一种复杂的机制来调度和平衡各个节点的负载和并行处理过程。目前一些基于MPP技术的服务器往往通过系统级软件(如数据库)来屏蔽这种复杂性。举例来说,NCR的Teradata就是基于MPP技术的一个关系数据库软件,基于此数据库来开发应用时,不管后台服务器由多少个节点组成,开发人员所面对的都是同一个数据库系统,而不需要考虑如何调度其中某几个节点的负载。

1、打开控制面板,选择并进入“程序”,双击“打开或关闭Windows服务”,在d出的窗口中选择“Internet信息服务”下面所有地选项,点击确定后,开始更新服务。

2、更新完成后,打开浏览器,输入“>

3、当web服务器搭建成功后,我们下一步所要做的就是把我们开发的网站安装到Web服务器的目录中。一般情况下,当Web服务器安装完成后,会创建路径“%系统根目录%inetpub/>

4、设置防火墙,让局域网当其它计算机也能访问本地网站资源。具体方法:打开控制面板,选择“系统和安全”,点击“允许程序通过Windows防火墙”,在d出的对话框中勾选“万维网服务>

5、在局域网中其它计算机上,打开浏览器,输入 “>

扩展资料:

入门级服务器所连的终端比较有限(通常为20台左右),况且在稳定性、可扩展性以及容错冗余性能较差,仅适用于没有大型数据库数据交换、日常工作网络流量不大,无需长期不间断开机的小型企业。

不过要说明的一点就是目前有的比较大型的服务器开发、生产厂商在后面我们要讲的企业级服务器中也划分出几个档次,其中最低档的一个企业级服务器档次就是称之为"入门级企业级服务器",这里所讲的入门级并不是与我们上面所讲的"入门级"具有相同的含义,不过这种划分的还是比较少。

还有一点就是,这种服务器一般采用Intel的专用服务器CPU芯片,是基于Intel架构(俗称"IA结构")的,当然这并不是一种硬性的标准规定,而是由于服务器的应用层次需要和价位的限制。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/zz/12961467.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-29
下一篇 2023-05-29

发表评论

登录后才能评论

评论列表(0条)

保存