AMD的CPU各代名称

AMD的CPU各代名称,第1张

AMD Athlon 64 FX-55
AMD Athlon64 FX-55为ClawHammer核心,实际工作频率为2600MHZ,一级缓存为128K,二级缓存为1M,外频为200MHz,采用013微米工艺,额定电压为15V,接口类型为Socket 939并支持双通道DDR 400内存。
AMD Athlon 64 FX-55是2004年10月推出的旗舰级处理器产品,仍采用130纳米制造工艺,于Athlon 64 FX-53相比,频率提高了200MHz,其他参数变化不是很大,它已经改进过了ClawHammer核心,得以支持双通道DDR 400,在以后的日子里,估计AMD将推出的则是90纳米的处理器产品,FX-55可能会成为该系列CPU中最高端的一款。
AMD Athlon 64 FX-53
实际工作频率为240GHz,二级缓存为1MB,核心内部集成了双通道DDR内存控制器,采用013微米制程,采用Socket939接口,前端总线为200MHz。
AMD Athlon 64 FX-51
这款针对桌面台式机的Athlon64 FX51拥有高达64位的寻址能力,支持双通道DDR400,高达1M的二级缓存等等,性能非常出色,不过由于功耗过大,价格过高,所以极少有人问津。 采用s940接口
AMD Opteron 244
AMD Opteron(皓龙) 处理器有三个不同系列可供选择:100 系列 (单路)、200 系列 (单或双路) 及 800 系列 (最高到 8 路)。
二级缓存 1M FSB 800MHz 制程工艺 013 主频 15-20G 接口类型 SOCKET 940
AMD Opteron 240
AMD Opteron 242
AMD Opteron 246
AMD Athlon 64 4000+
Athlon 64 4000+ Socket 939处理器采用013微米制程,工作频率为24GHz,工作电压15v,配备1MB L2缓存。支持32位和64位台式电脑;它还支持Cool'n'Quiet低耗能技术,配有增强病毒防护技术(EVP)功能,可以提供更高一级集成安全性,以发现和阻止某些恶意病毒、计算机蠕虫和特洛伊木马的传播。
二级缓存 1M FSB 400MHz 制程工艺 013 主频 20-30G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET 939
AMD Athlon 64 3500+(Winchester核心)
AMD Athlon 64 3500+(Winchester核心)为Winchester核心,实际工作频率为2200MHZ,一级缓存为128K,二级缓存为512K,外频为200MHz,采用90纳米工艺,额定电压为15V,接口类型为Socket 939并支持双通道DDR 400内存。
二级缓存 512KB FSB 400MHz 制程工艺 009 主频 20-30G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET 939
AMD Athlon 64 3200+(Winchester核心)
AMD Athlon 64 3200+(Winchester核心)为Winchester核心,实际工作频率为2000MHZ,一级缓存为128K,二级缓存为512K,外频为200MHz,采用90纳米工艺,额定电压为15V,接口类型为Socket 939并支持双通道DDR 400内存。
AMD Athlon 64 3000+(Winchester核心)
AMD Athlon 64 3000+(Winchester核心)为Winchester核心,实际工作频率为1800MHZ,一级缓存为128K,二级缓存为512K,外频为200MHz,采用90纳米工艺,额定电压为15V,接口类型为Socket 939并支持双通道DDR 400内存。
AMD Athlon 64 3400+(Clawhammer核心)
AMD Athlon 64 3400+微处理器采用Socket 754针脚,内建128 KB容量一级缓存(64 KB指令 + 64 KB数据)及1 MB容量二级缓存,支持64位单通道DDR400 / 333 / 266 / 200内存,功耗为89瓦,千颗量购单价为417美元。
二级缓存 1M FSB 400MHz 制程工艺 013 主频 20-30G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET 754
AMD Athlon 64 3000+(Newcastle核心)
Athlon 64 3000+微处理器采用Newcastle核心,它的实际频率2GHz,采用013微米制程,共集成1亿500万个晶圆管,内含512 KB容量全速二级缓存,采用Socket 754脚位,可支援64位单通道DDR400 / 333 / 266 / 200内存,工作电压为15 V。
二级缓存 512KB FSB 400MHz 制程工艺 013 主频 20-30G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET 754
AMD AthlonMP 2400+
Athlon MP2400+ 采用SOCKET A接口,FSB 266MHZ,013um工艺制造,主频为1866MHZ,二级缓存为256K。
Athlon MP2400+的Smart MP技术是AMD多处理器平台的主要功能特色,由于可以提高两个中央处理器、芯片组及存储器系统之间的数据传输量,因此能大幅提升整体平台的性能。Smart MP技术采用两个设有错误校正代码(ECC)的点对点266MHz高速系统总线,力求可为双处理器系统的每一中央处理器提供高达21Gbps的总线带宽。Smart MP技术也采用经优化的MOESI高速缓存同调协议,可以为多处理器系统管理数据及存储器的传输 *** 作。 AMD AthlonMP处理器采用已获专利的QuantiSpeed结构,其中包括设有硬件数据预取功能的高性能全速高速缓存、全面设有流水线的超标量(superscalar)浮点运算器、以及一个专用的L2翻译后援缓冲器(TLB)。此外,这款处理器也采用由AMD的3DNow!技术发展出来并添加了51个新指令的专业3DNow! 技术,使系统可以提供更细致逼真的影像、更准确的数字
音响以及多采多姿的网上乐趣。 AMD AthlonMP处理器可与性能稳定的AMDSocketA结构兼容,并可支持DDR内存。
二级缓存 256KB FSB 266MHz 制程工艺 013 主频 15-20G 接口类型 SOCKET A
AMD AthlonMP 2600+
AthlonMP 2600+基于TBred核心,266MHz前端总线,256K L2 Cache,工作电压为165V。
AMD AthlonMP 2800+
AMD AthlonXP 3200+(400MHz FSB)
AthlonXP 3200+为Barton 核心,实际工作频率为2200 MHz,一级缓存为128K,二级缓存为512k,倍频为11,外频为166MHz,采用013微米工艺,额定电压为165V,接口类型为SocketA(462针脚)。
二级缓存 512KB FSB 400MHz 制程工艺 013 主频 20-30G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET A
AMD AthlonXP 2500+(Barton核心)
Athlon XP 2500+为Barton 核心,实际工作频率为1830MHZ,一级缓存为128K,二级缓存为512k,倍频为11,外频为166MHz,采用013微米工艺,功率为683W,额定电压为165V,接口类型为SocketA(462针脚)。
AMD AthlonXP 3000+(333MHz FSB)
Athlon XP 3000+实际运行频率是2167GH
AMD AthlonXP 2600+(TB核心,333MHz FSB)
Athlon XP 2600+为TB核心,实际工作频率为1917MHz,一级缓存为128K,二级缓存为512k,倍频为125,外频为166MHz,采用013微米工艺,额定电压为165V,接口类型为SocketA(462针脚)。
二级缓存 512KB FSB 333MHz 制程工艺 013 主频 15-20G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET A
AMD AthlonXP 2800+(Barton核心)
AMD AthlonXP 2700+
Athlon XP 2700+为Thoroughbred-B核心,实际工作频率为216GMHz,一级缓存为128K,二级缓存为512k,倍频为13,外频为166MHz,采用013微米工艺,额定电压为165V,接口类型为SocketA(462针脚)。
二级缓存 512KB FSB 333MHz 制程工艺 013 主频 20-30G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET A
AMD AthlonXP 2400+
二级缓存 512KB FSB 333MHz 制程工艺 013 主频 15-20G 接口类型 SOCKET A
AMD AthlonXP 2200+(TB核心,266MHz FSB)
AMD AthlonXP 1800+
二级缓存 256KB FSB 266MHz 制程工艺 013 主频 15-20G 指令集 MMX(+),3DNow!(+),SSE,SSE2 接口类型 SOCKET A

AMD发展历史
自成立以来,AMD就不断地开发新产品,并逐渐形成了一套与众不同的企业文化,而众多员工也在事业上取得了很大的成就。下面将简单介绍AMD近三十年来的发展历程,从中我们可以预见公司的灿烂前景。
AMD的历史悠久,业绩显赫。这个传统已经成为一股凝聚力,将AMD的全球员工紧密地团结在一起。AMD创办于1969年,当时公司的规模很小,甚至总部就设在一位创始人的家中。但是从那时起到现在,AMD一直在不断地发展,目前已经成为一家年收入高达24亿美元的跨国公司。下面将介绍决定AMD发展方向的重要事件、推动AMD向前发展的主要力量,并按时间顺序回顾AMD各年大事。
1969-74 - 寻找机会
对Jerry Sanders来说,1969年5月1日是一个非常重要的日子。在此之前的几个月里,他与其它七个合作伙伴一直为创建一家新公司而埋头苦干。Jerry已经在上一年辞去了Fairchild Semiconductor公司全球行销总监的职务。此刻,他正带领一个团队努力工作,这个团队的目标非常明确--通过为生产计算机、通信设备和仪表等电子产品的厂商提供日益精密的构成模块,创建一家成功的半导体公司。
虽然在公司刚成立时,所有员工只能在创始人之一的JohnCarey的起居室中办公,但不久他们便迁往美国加州圣克拉拉,租用一家地毯店铺后面的两个房间作为办公地点。到当年9月份,AMD已经筹得所需的资金,可以开始生产,并迁往加州森尼韦尔的901 Thompson Place,这是AMD的第一个永久性办公地点。
在创办初期,AMD的主要业务是为其它公司重新设计产品,提高它们的速度和效率,并以"第二供应商"的方式向市场提供这些产品。AMD当时的口号是"更卓越的参数表现"。为了加强产品的销售优势,该公司提供了业内前所未有的品质保证--所有产品均按照严格的MIL-STD-883标准进行生产及测试,有关保证适用于所有客户,并且不会加收任何费用。
在AMD创立五周年时,AMD已经拥有1500名员工,生产200多种不同的产品--其中很多都是AMD自行开发的,年销售额将近2650万美元。
历史回顾
1969年5月1日--AMD公司以10万美元的启动资金正式成立。
1969年9月--AMD公司迁往位于901 Thompson Place,Sunnyvale 的新总部。
1969年11月--Fab 1产出第一个优良芯片--Am9300,这是一款4位MSI移位寄存器。
1970年5月--AMD成立一周年。这时AMD已经拥有53名员工和18种产品,但是还没有销售额。
1970--推出一个自行开发的产品--Am2501。
1972年11月--开始在新落成的902 Thompson Place 厂房中生产晶圆。
1972年9月--AMD上市,以每股15美元的价格发行了525万股。
1973年1月--AMD在马来西亚槟榔屿设立了第一个海外生产基地,以进行大批量生产。
1973--进行利润分红。
1974--AMD以2650万美元的销售额结束第五个财年。
1974-79 - 定义未来
AMD在第二个五年的发展让全世界体会到了它最持久的优点--坚忍不拔。尽管美国经济在1974到75年之间经历了一场严重的衰退,AMD公司的销售额也受到了一定的影响,但是仍然在此期间增长到了168亿美元,这意味着平均年综合增长率超过60%。
在AMD成立五周年之际,AMD举办了一项后来发展成为公司著名传统的活动--它举办了一场盛大的庆祝会,即一个由员工及其亲属参加的游园会。
这也是AMD大幅度扩建生产设施的阶段,这包括在森尼韦尔建造915 DeGuigne,在菲律宾马尼拉设立一个组装生产基地,以及扩建在马来西亚槟榔屿的厂房。
历史回顾
1974年5月--为了庆祝公司创建五周年,AMD举办了一次员工游园会,向员工赠送了一台电视、多辆10速自行车和丰盛的烧烤野餐。
1974--位于森尼韦尔的915 DeGuigne建成。
1974-75--经济衰退迫使AMD规定专业人员每周工作44小时。
1975--AMD通过AM9102进入RAM市场。
1975--Jerry Sanders提出:"以人为本,产品和利润将会随之而来。"
1975--AMD的产品线加入8080A标准处理器和AM2900系列。
1976--AMD在位于帕洛阿尔托的Rickey's Hyatt House 举办了第一次盛大的圣诞节聚会。
1976--AMD和Intel签署专利相互授权协议。
1977--西门子和AMD创建Advanced Micro Computers (AMC) 公司。
1978--AMD在马尼拉设立一个组装生产基地。
1978--AMD的销售额达到了一个重要的里程碑:年度总营业额达到1亿美元。
1978--奥斯丁生产基地开始动工。
1979--奥斯丁生产基地投入使用。
1979--AMD在纽约股票交易所上市。
1980 - 1983 - 寻求卓越
在20世纪80年代早期,两个著名的标志代表了AMD的处境。第一个是所谓的"芦笋时代",它代表了该公司力求增加它向市场提供的专利产品数量的决心。与这种高利润的农作物一样,专利产品的开发需要相当长的时间,但是最终会给前期投资带来满意的回报。第二个标志是一个巨大的海浪。AMD将它作为"追赶潮流"招募活动的核心标志,并用这股浪潮表示集成电路领域的一种不可阻挡的力量。
我们的确是不可阻挡的。AMD的研发投资一直领先于业内其他厂商。在1981财年结束时,该公司的销售额比1979财年增长了一倍以上。在此期间,AMD扩建了它的厂房和生产基地,并着重在得克萨斯州建造新的生产设施。AMD在圣安东尼奥建起了新的生产基地,并扩建了奥斯丁的厂房。AMD迅速地成为了全球半导体市场中的一个重要竞争者。
历史回顾
1980--Josie Lleno在AMD在圣何塞会议中心举办的"五月圣诞节"聚会中赢得了连续20年、每月1000美元的奖励。
1981--AMD的芯片被用于建造哥伦比亚号航天飞机。
1981--圣安东尼奥生产基地建成。
1981--AMD和Intel决定延续并扩大他们原先的专利相互授权协议。
1982--奥斯丁的第一条只需4名员工的生产线(MMP)开始投入使用。
1982--AMD和Intel签署围绕iAPX86微处理器和周边设备的技术交换协议。
1983--AMD推出当时业内最高的质量标准INTSTD1000。
1983--AMD新加坡分公司成立。
1984-1989 --经受严峻考验
AMD以公司有史以来最佳的年度销售业绩迎来了它的第十五周年。在AMD庆祝完周年纪念之后的几个月里,员工们收到了创纪录的利润分红支票,并与来自洛杉矶的Chicago乐队和来自得克萨斯州的Joe King Carrasco 、Crowns等乐队一同欢庆圣诞节。
但是在1986年,变革大潮开始席卷整个行业。日本半导体厂商逐渐在内存市场中占据了主导地位,而这个市场一直是AMD业务的主要支柱。同时,一场严重的经济衰退冲击了整个计算机市场,限制了人们对于各种芯片的需求。AMD和半导体行业的其他公司都致力于在日益艰难的市场环境中寻找新的竞争手段。
到了1989,Jerry Sanders开始考虑改革:改组整个公司,以求在新的市场中赢得竞争优势。AMD开始通过设立亚微米研发中心,加强自己的亚微米制造能力。
历史回顾
1984--曼谷生产基地开始动工。
1984--奥斯丁的第二个厂房开始动工。
1984--AMD被列入《美国100家最适宜工作的公司》一书。
1985--AMD首次进入财富500强。
1985--位于奥斯丁的Fabs 14 和15投入使用。
1985--AMD启动自由芯片计划。
1986--AMD推出29300系列32位芯片。
1986--AMD推出业界第一款1M比特的EPROM。
1986年10月--由于长时间的经济衰退,AMD宣布了10多年来的首次裁员计划。
1986年9月--Tony Holbrook被任命为公司总裁。
1987--AMD与Sony公司共同设立了一家CMOS技术公司。
1987年4月--AMD向Intel公司提起法律诉讼。
1987年4月--AMD和 Monolithic Memories公司达成并购协议。
1988年10月--SDC开始动工。
1989-94 - 展开变革
为了寻找新的竞争手段,AMD提出了"影响范围"的概念。对于改革AMD而言,这些范围指的是兼容IBM计算机的微处理器、网络和通信芯片、可编程逻辑设备和高性能内存。此外,该公司的持久生命力还来自于它在亚微米处理技术开发方面取得的成功。这种技术将可以满足该公司在下一个世纪的生产需求。
在AMD创立25周年时,AMD已经动用了它所拥有的所有优势来实现这些目标。目前,AMD在它所参与的所有市场中都名列第一或者第二,其中包括Microsoft Windows 兼容市场。该公司在这方面已经成功地克服了法律障碍,可以生产自行开发的、被广泛采用的Am386 和 Am486 微处理器。AMD已经成为闪存、EPROM、网络、电信和可编程逻辑芯片的重要供应商,而且正在致力于建立另外一个专门生产亚微米设备的大批量生产基地。在过去三年中,该公司获得了创纪录的销售额和运营收入。
尽管AMD的形象与25年前相比已经有了很大的不同,但是它仍然像过去一样,是一个顽强、坚决的竞争对手,并可以通过它的员工的不懈努力,战胜任何挑战。
历史回顾
1989年5月--AMD设立高层领导办公室,其中包括公司的三位高层主管。
1990年5月--Rich Previte成为公司的总裁兼首席执行官。Tony Holbrook继续担任首席技术官,并成为董事会主席。
1990年9月--SDC开始使用硅技术。
1991年3月--AMD推出AM386微处理器系列,成功打破了Intel对市场的垄断。
1991年10月--AMD售出它的第一百万个Am386。
1992年2月--AMD对Intel的长达五年的法律诉讼结束,AMD获得了制造和销售全部Am386系列处理器的权力。
1993年4月--AMD和富士建立合资公司,共同生产闪存产品。
1993年4月--AMD推出Am486微处理器系列的第一批成员。
1993年7月--Fab 25在奥斯丁开始动工。
1993--AMD宣布AMD-K5项目开发计划。
1994年1月--康柏计算机公司和AMD建立长期合作关系。根据合作协议,康柏计算机将采用Am485微处理器。
1994年2月--AMD员工开始迁往AMD在森尼韦尔的另外一个办公地点。
1994年2月--Digital Equipment 公司成为Am486微处理器的组装合作伙伴。
1994年3月10日--联邦法院陪审团裁决AMD拥有对287数学协处理器中的Intel微码的所有权。
1994年5月1日--AMD庆祝创立25周年,并在森尼韦尔和奥斯丁分别邀请了Rod Stewart和Bruce Hornsby献艺。
1995-1999 --从变革到超越
AMD在这段时期的发展主要是通过提供越来越具竞争力的产品,不断地开发出对于大批量生产至关重要的制造和处理技术,以及加强与战略性合作伙伴的合作关系而实现的。在这段时期,与基础设施、软件、技术和OEM合作伙伴的合作关系非常重要,它使得AMD能够带领整个行业向创新的平台和产品发展,在市场中再次引入竞争。
1995年,AMD和NexGen两家公司的高层主管首次会面,探讨了一个共同的梦想:创建一种能够在市场中再次引入竞争的微处理器系列。这些会谈促使AMD在1996年收购了NexGen公司,并成功地推出了AMD-K6 处理器。AMD-K6处理器不仅实现了这些起点很高的目标, 而且可以充当一座桥梁,帮助AMD推出它的下一代AMD 速龙 处理器系列。这标志着该公司的真正成功。
AMD速龙 处理器在1999年的成功推出标志着AMD终于实现了自己的目标:设计和生产一款业界领先、自行开发、兼容Microsoft Windows的处理器。AMD首次推出了一款能够采用针对AMD处理器进行了专门优化的芯片组和主板、业界领先的处理器。AMD速龙 处理器将继续为该公司和整个行业创造很多新的记录,其中包括第一款达到历史性的1GHz(1000MHz)主频的处理器,这使得它成为了行业发展历史上最著名的处理器产品之一。AMD速龙 处理器和基于AMD速龙 处理器的系统已经获得了全球很多独立刊物和组织颁发的100多项著名大奖。
在推出这款创新的产品系列的同时,该公司还具备了足够的生产能力,可以满足市场对于其产品的不断增长的需求。1995年,位于得克萨斯州奥斯丁的Fab 25顺利建成。在Fab 25建成之前,AMD已经为在德国德累斯顿建设它的下一个大型生产基地做好了充分的准备。与Motorola的战略性合作让AMD可以开发出基于铜互连、面向未来的处理器技术,从而让AMD成为了第一个能够利用铜互连技术开发兼容Microsoft Windows的处理器的公司。这种共同开发的处理技术将能够帮助AMD在Fab 30稳定地生产大批的AMD速龙 处理器。
通过提供针对双运行闪存设备的行业标准,AMD继续保持着它在闪存技术领域的领先地位。闪存已经成为推动当时的技术繁荣的众多技术的重要组件。手提电话和互联网加大了市场对于闪存的需求,而且它的应用正在变得日益普遍。AMD范围广泛的闪存设备产品线当时已经能够满足手提电话、汽车导航系统、互联网设备、有线电视机顶盒、有线电缆调制解调器和很多其他应用的内存要求。
通过多种可以为客户提供显着竞争优势的闪存和微处理器产品,能稳定生产大量产品、业界领先的全球性生产基地,以及面向未来、富有竞争力的产品和制造计划,AMD得以在成功地渡过一个繁荣时期之后,顺利地进入新世纪。
历史回顾
1995--富士-AMD半导体有限公司(FASL)的联合生产基地开始动工。
1995--Fab 25建成。
1996--AMD收购NexGen。
1996--AMD在德累斯顿动工修建Fab 30。
1997--AMD推出AMD-K6处理器。
1998--AMD在微处理器论坛上发布AMD速龙处理器(以前的代号为K7)。
1998--AMD和Motorola宣布就开发铜互连技术的开发建立长期的伙伴关系。
1999--AMD庆祝创立30周年。
1999--AMD推出AMD速龙处理器,它是业界第一款支持Microsoft Windows计算的第七代处理器。
2000---
有一件事是毋庸置疑的,那就是AMD将会继续秉持它过去所坚持的理念:来自竞争的驱动力,对客户的关注,创新的产品,以及了解和适应变革的能力。最重要的是,该公司的未来将由AMD员工塑造。他们的长期努力已经让AMD成为了一个成功的、传奇性的公司。
2000--AMD宣布Hector Ruiz被任命为公司总裁兼COO。
2000--AMD日本分公司庆祝成立25周年。
2000--AMD在第一季度的销售额首次超过了10亿美元,打破了公司的销售记录。
2000--AMD的Dresden Fab 30开始首次供货。
2001--AMD推出AMD 速龙 XP处理器。
2001--AMD推出面向服务器和工作站的AMD 速龙 MP 双处理器。
2002--AMD 和 UMC宣布建立全面的伙伴关系,共同拥有和管理一个位于新加坡的300-mm晶圆制造中心,并合作开发先进的处理技术设备。
2002--AMD收购Alchemy Semiconductor,建立个人连接解决方案业务部门。
2002--Hector Ruiz接替Jerry Sanders,担任AMD的首席执行官。
2002--AMD推出第一款基于MirrorBit™ 架构的闪存设备。
2003-AMD 推出面向服务器和工作站的AMD Opteron™(皓龙) 处理器
2003-AMD 推出面向台式电脑 和笔记簿电脑的AMD 速龙™ 64处理器
2003-AMD推出 AMD 速龙™ 64 FX处理器 使基于AMD 速龙™ 64 FX处理器的系统能提供影院级计算性能

AMD对于需要高性能计算和 IT 基础设施的企业用户来说, AMD 提供一系列解决方案。 o 1981年,AMD 287 FPU ,使用Intel 80287核心。产品的市场定位和性能与Intel 80287基本相同。也是迄今为止AMD公司 唯一生产过的FPU产品,十分稀有。 o AMD 8080(1974年)、8085(1976年)、8086(1978年)、8088(1979年)、80186(1982年)、80188、80286微处理器,使用Intel 8080核心。产品的市场定位和性能与Intel同名产品基本相同。 o AMD 386(1991年)微处理器,核心代号P9,有SX和DX之分,分别与Intel 80386SX和DX相兼容的微处理器。AMD 386DX与Intel 386DX同为32位处理器。不同的是AMD 386SX是一个完全的16位处理器,而Intel 386SX是一种准32位处理器----内部总线32位,外部16位。AMD 386DX的性能与Intel 80386DX相差无己,同为当时的主流产品之一。AMD也曾研发了386 DE等多种型号基于386核心的嵌入式产品。 o AMD 486DX(1993年)微处理器,核心代号P4,AMD自行设计生产的第一代486产品。而后陆续推出了其他486级别的产品,常见的型号有:486DX2,核心代号P24;486DX4,核心代号P24C;486SX2,核心代号P23等。其它衍生型号还有486DE、486DXL2等,比较少见。AMD 486的最高频率为120MHz(DX4-120),这是第一次在频率上超越了强大的竞争对手Intel。 o AMD 5X86(1995年)微处理器,核心代号X5,AMD公司在486市场的利器。486时代的后期,TI(德州仪器)推出了高性价比的TI486DX2-80,很快占领了中低端市场,Intel也推出了高端的Pentium系列。AMD为了抢占市场的空缺,便推出了5x86系列CPU(几乎是与Cyrix 5x86同时推出)。它是486级最高频的产品----334、133MHz,035微米制造工艺,内置16KB一级回写缓存,性能直指Pentium75,并且功耗要小于Pentium。 o AMD K5(1997年)微处理器,1997年发布。因为研发问题,其上市时间比竞争对手Intel的"经典奔腾"晚了许多,再加上性能并不十分出色,这个不成功的产品一度使得AMD的市场份额大量丧失。K5的性能非常一般,整数运算能力比不上Cyrix x86,但比"经典奔腾"略强;浮点预算能力远远比不上"经典奔腾",但稍强于Cyrix 6x86。综合来看,K5属于实力比较平均的产品,而上市之初的低廉的价格比其性能更加吸引消费者。另外,最高端的K5-RP200产量很小(惯例吧:)并且没有在中国大陆销售。 o AMD K6(1997年)处理器是与Intel PentiumMMX同档次的产品。是AMD在收购了NexGen,融入当时先进的NexGen 686技术之后的力作。它同样包含了MMX指令集以及比Pentium MMX整整大出一倍的64KB的L1缓存!整体比较而言,K6是一款成功的作品,只是在性能方面,浮点运算能力依旧低于Pentium MMX。 o K6-2(1998年)系列微处理器曾经是AMD的拳头产品,现在我们称之为经典。为了打败竞争对手Intel,AMD K6-2系列微处理器在K6的基础上做了大幅度的改进,其中最主要的是加入了对"3DNow!"指令的支持。"3DNow!"指令是对X86体系的重大突破,此项技术带给我们的好处是大大加强了计算机的3D处理能力,带给我们真正优秀的3D表现。当你使用专门"3DNow!"优化的软件时就能发现,K6-2的潜力是多么的巨大。而且大多数K6-2并没有锁频,加上025微米制造工艺带给我们的低发热量,能很轻松的超频使用。也就是从K6-2开始,超频不再是Intel的专有名词。同时,K62也继承了AMD一贯的传统,同频型号比Intel产品价格要低25%左右,市场销量惊人。K6-2系列上市之初使用的是"K6 3D"这个名字("3D"即"3DNow!"),待到正式上市才正名为"K6-2"。正因为如此,大多数K6 3D为ES(少量正式版,毕竟没有量产:)。K6 3D曾经有一款非标准的250MHz产品,但是在正式的K6-2系列中并没有出现。K6-2的最低频率为200MHz,最高达到550MHz。 o AMD于1999年2月推出了代号为"Sharptooth"(利齿)的K6-3(1998年)系列微处理器,它是AMD推出的最后一款支持Super架构和CPGA封装形式的CPU。K6-3采用了025微米制造工艺,集成256KB二级缓存(竞争对手Intel的新赛扬是128KB),并以CPU的主频速度运行。而曾经Socket 7主板上的L2此时就被K6-3自动识别为了L3,这对于高频率的CPU来说无疑很有优势,虽然K6-3的浮点运算依旧差强人意。因为各种原因,K6-3投放市场之后难觅踪迹,价格也并非平易近人,即便是更加先进的K6-3+出现之后。 oAMD于2001年10月推出了K8架构。尽管K8和K7采用了一样数目的浮点调度程序窗口(scheduling window ),但是整数单元从K7的18个扩充到了24个,此外,AMD将K7中的分支预测单元做了改进。global history counter buffer(用于记录CPU在某段时间内对数据的访问,称之为全历史计数缓冲器)比起Athlon来足足大了4倍,并在分支测错前流水线中可以容纳更多指令数,AMD在整数调度程序上的改进让K8的管线深度比Athlon多出2级。增加两级线管深度的目的在于提升K8的核心频率。在K8中,AMD增加了后备式转换缓冲,这是为了应对Opteron在服务器应用中的超大内存需求。 oAMD于2007下半年推出K10架构。 采用K10架构的 Barcelona为四核并有463亿晶体管。Barcelona是AMD第一款四核处理器,原生架构基于65nm工艺技术。和Intel Kentsfield四核不同的是,Barcelona并不是将两个双核封装在一起,而是真正的单芯片四核心。 ● Barcelona新特性解析:引入全新SSE128技术 Barcelona中的一项重要改进是被AMD称为“SSE128”的技术,在K8架构中,处理器可以并行处理两个SSE指令,但是SSE执行单元一般只有64位带宽。对于128位的SSE *** 作,K8处理器需要将其作为两个64位指令对待。也就是说,当一个128位 SSE指令被取出后,首先需要将其解码为两个micro-ops,因此一个单指令还占用了额外的解码端口,降低了执行效率。 而Barcelona加宽了执行单元从64位到128位,所有128位的SSE *** 作不再需要进行解码分解为两个64位 *** 作,并且浮点调度器也可以支持这种128位 SSE *** 作,提高了执行效率。 提高SSE指令执行单元带宽的同时,也会带来一些新的变化,也可以说是新的瓶颈:指令存取带宽。为了将并行处理器过程中解码数量最大化,Barcelona开始支持32字节每时钟周期的指令存取,而先前K8架构只支持16字节。32字节的指令存取带宽不仅对处理器SSE代码有帮助,同时对于整数指令也有效果。 ● Barcelona新特性解析:内存控制器再度强化 当年当AMD将内存控制器集成至CPU内部时,我们看到了崭新而强大的K8构架。如今,Barcelona的内存控制器在设计上将又一次极大的改进其内存性能。 Intel Xeon服务器所有使用的FB-DIMM内存一大优势是,可以同时执行读和写命令到AMB,而在标准的DDR2内存中,你只能同时进行一个 *** 作,而且读和写的切换会有非常大的损失。如果是一连串的随机混合执行的话,将会带来非常严重的资源浪费,而如果是先全部读然后再转换到写的话,就可以避免性能的损失。K8内存控制器就采用读取优先于写的策略来提高运行效率,但是Barcelona则更加智能化。 但是读取的数据会被先存放在buffer中,而不采用先直接执行写,但当它的容量达到了极限就会溢出,为了避免这种情况,在此之前才对读写之间进行切换,同时可以带来带宽和延迟方面效率的提高。K8核心配备的是128-bits宽度的单内存控制器,但是在Barcelona中,AMD把它分割成两个64-bit,每个控制器可以独立的进行 *** 作,因此它可以带来效率上的不小提升,尤其是在四核执行的环境下,每个核心可以独立占有内存访问资源。 Barcelonas中集成的北桥部分(注意不是主板北桥)也被设计成更高的带宽,更深的buffers将允许更高的带宽利用率,同时北桥自身已经可以使用未来的内存技术,比如DDR3。 内存控制器的预取功能是运用相当广泛、十分重要的一项功能。预取可以减少内存延迟对整体性能的负面影响。当NVIDIA发布nForce2主板时,重点介绍的就是nForce2芯片组的128位智能预取功能。Intel在发布Core 2处理器之时也强调了CORE构架每核心拥有三个预取单元。 K8构架中每个核心设计有2个预取器,一个是指令预取器,另一个是数据预取器。K8L构架的Barcelona保持了2个的数量,但在性能上有了较大的改进。一个明显的改进是数据预取器直接将数据寄存入L1缓存中,相比K8构架中寄存入L2缓存的做法,新的数据预取器准确率更高,速度更快,内存性能及CPU整体性能将得益于此。 ● Barcelona新特性解析:创新——三级缓存 受工艺技术方面的影响,AMD处理器的缓存容量一直都要落后于Intel,AMD自己也清楚自己无法在宝贵的die上加入更多的晶体管来实现大容量的缓存,但是勇于创新的AMD却找到了更好的办法——集成内存控制器。 处理器整合内存控制器可以说是一项杰作,拥有整合内存控制器的K8构架仅依靠512KB的L2缓存就能够击败当时的对手Pentium 4。直到现在的Athlon 64 X2也依然保持着Intel 2002年就已过时的512KB L2缓存。 现在Core 2已经拥有了4MB的L2缓存,看来Intel和AMD之间的缓存差距还将保持,因为Barcelona的L2缓存依然是512KB。相比之下,Intel四核的Kentsfield芯片拥有8MB的L2缓存,而2007年末上市的新型Penryn芯片将拥有12MB的L2缓存。 Barcelona的缓存体系和K8构架有一定的相似之处,它的四颗核心各拥有64KB的L1缓存和512KB的L2缓存。从简化芯片设计的角度来看,四核心共享巨大的L2缓存对K8L构架而言并不合适,所以AMD引入了L3缓存,得益于65nm工艺,Barcelona在一颗晶圆上集成四颗核心外,还集成了一块2MB容量的L3缓存。也就是说L3缓存与4颗内核同样原生于一块晶圆,其容量为最小2M起跳。同L2缓存一样,L3缓存也是独立的,L1缓存的数据和L3缓存的数据将不会重复。 Barcelona的缓存工作原理是:L2缓存是作为L1缓存的备用空间。L1缓存储存着CPU当前最需要的数据,而当空间不足时,一些不是最重要的数据就转移到L2缓存中。而当未来再次需要时,则从L2缓存中再次转移到L1缓存中。新加入的L3缓存延续了L2缓存的角色,四颗核心的L2缓存将溢出的数据暂时寄存在L3缓存中。 L1缓存和L2缓存依然分别是2路和16路,L3缓存则是32路。快速的32路L3缓存不仅可以更好的满足多任务并行,而且对单任务的执行也有着较大积极作用。尤其在3D运用方面,2MB的L3缓存将对性能产生极大的推进作用。 AMD全新45nm的Shanghai架构 2008年11月13日,AMD公司宣布其代号为“上海”的新一代45nm四核皓龙处理器已经广泛上市。“上海”性能最高提升达35%,而空载时的功耗可显著降低35%。新一代四核AMD皓龙处理器采用创新的设计,能够带来更高的虚拟化性能和每瓦性价比,帮助数据中心提高效率,降低复杂性,从而最大限度地满足IT管理者的需要,以更低的投入实现更高的产出。 AMD公司负责计算解决方案业务的高级副总裁Randy Allen表示:“新一代四核AMD皓龙处理器是在正确的时间诞生的一款正确的产品。堪称完美的提前推出,使之成为x86服务器性能的新王者。通过与OEM厂商和解决方案供应商等合作伙伴的紧密合作,AMD的创新技术在满足企业用户目前最基本需求的同时,还为其未来发展做好准备。自4年前AMD推出世界首款x86双核处理器以来,这一增强的新一代皓龙处理器带来了AMD产品性能和每瓦性价比的最大提升。” 领先的性能满足当今最迫切的商务需求 数据中心的管理者们面对日益增长的压力,诸如网络服务、数据库应用等的企业工作负载对计算的需求越来越高;而在当前的IT支出环境下,还要以更低的投入实现更高的产出。迅速增长的新计算技术如云计算和虚拟化等,在今年第二季度实现了60%的同比增长率3,这些技术在迅速应用的同时也迫切需要一个均衡的系统解决方案。最新的四核AMD皓龙处理器进一步增强了AMD独有的直连架构优势,能够为包括云计算和虚拟化在内的日渐扩大的异构计算环境提供具有出色稳定性和扩展性的解决方案。 卓越的虚拟化性能 具有改进的AMD直连架构和AMD虚拟化技术(AMD-V(TM)),45nm四核皓龙处理器成为已有的基于AMD技术的虚拟化平台的不二选择,目前全球的OEM厂商已基于上一代AMD四核皓龙处理器推出了9款专门为虚拟化应用而设计的服务器。新一代处理器可提供更快的虚拟机转换时间,并优化快速虚拟化索引技术(RVI)的特性,从而提高虚拟机的效率,AMD的AMD-V(TM)还可以减少软件虚拟化的开销。 无与伦比的性价比 与历代的AMD皓龙处理器相比,新一代四核皓龙处理器带来了前所未有的性能和每瓦性能比显著增强,包括: o 以与上代四核皓龙处理器相同的功耗设计,大幅提高CPU时钟频率。这得益于处理器设计增强、AMD业界领先的45nm沉浸式光刻技术和超强的处理器设计与验证能力。 o L3缓存容量提高200%,达到6MB,增强虚拟化、数据库和Java等内存密集型应用的性能。 o 支持DDR2-800内存,与现有AMD皓龙处理器相比内存带宽实现了大幅提高,并且比竞品使用的Fully-Buffered DIMM具有更高的能效。 o 即将推出的超传输总线(TM)30 (HyperTransport(TM) 30)技术将进一步增强AMD革命性的直连架构,计划于2009年2季度将处理器之间的通信带宽提高到176GB/s。 无可匹敌的节能特性 AMD皓龙处理器业已带来了业界领先的X86服务器处理器每瓦性价比,与之相比,新一代45nm四核AMD皓龙处理器在空载状态的能耗可以大幅降低35%,而性能可提高达35%。“上海”采用了众多的新型节能技术:AMD智能预取技术,可允许处理器核心在空载时进入“暂停”状态,而不会对应用性能和缓存中的数据有任何影响,从而显著降低能耗;AMD CoolCore(TM) 技术能够关闭处理器中非工作区域以进一步节省能耗。 在平台配置相似的情况下,基于75瓦AMD 四核皓龙处理器的平台,与基于50瓦处理器的竞争平台相比,具有高达30%的每瓦性能比优势。相似平台配置下,基于AMD 四核皓龙处理器2380的平台,空载状态的功耗为138瓦;与之对比,基于英特尔四核处理器的平台在相同状态下的功耗则为179瓦。基于AMD 四核皓龙2380型号处理器的平台,在SPECpower_ssj(TM)2008基准测试中取得761ssj_ops/每瓦的总成绩 (308,089 ssj_ops @ 100% 的目标负载),而英特尔四核平台为总成绩为561ssj_ops/每瓦 (267,804 ssj_ops @ 100%的目标负载) 4 前所未有的平台稳定性 作为唯一用相同的架构提供2路到8路服务器处理器的x86微处理器制造商,AMD新一代45nm四核皓龙处理器在插槽和散热设计与上代四核和双核AMD皓龙处理器兼容,延续了AMD的领先地位。这可以帮助消费者减少平台管理的复杂性和费用,增强数据中心的正常运行时间和生产力。新的45nm处理器适用于现有的Socket 1207插槽架构,未来代号为“Istanbul”的AMD 下一代皓龙处理器也计划使用相同插槽。
o 采用直连架构的 AMD 皓龙(Opteron)(TM) 处理器可以提供领先的多技术。 使IT管理员能够在同一服务器上运行32位与64位应用软件,前提是该服务器使用的是64位 *** 作系统。 o AMD 速龙(Athlon64),又叫阿斯龙(TM) 64 处理器可以为企业的台式电脑用户提供卓越的性能和重要的投资保护,具有出色的功能和性能,可以提供栩栩如生的数字媒体效果――包括音乐、视频、照片和 DVD 等。 o AMD 双核速龙(TM) 64(AthlonX2 64 )处理器可以提供更AMD双核速龙64处理器架构高的多任务性能,帮助企业在更短的时间内完成更多的任务(包括业务应用和视频、照片编辑,内容创建和音频制作等)。这些强大的功能使其成为那些即将上市的新型媒体中心的最佳选择。 o AMD 炫龙(TM) 64(Turion64) 移动计算技术可以利用移动计算领域的最新成果,提供最高的移动办公能力,以及领先的 64 位计算技术。 o AMD 闪龙(TM)(Sempron64) 处理器不仅可以为企业提供出色的性价比,而且可以提高员工的日常工作效率。 o AMD 羿龙(TM)(phenom)处理器 全新架构的4核处理器,进一步满足用户需求(在命名中取消“64”,因为现今的CPU都是64位的,不必再标明)。为满足消费者的不同需求,AMD近期也推出了3核羿龙产品! 对于消费者, AMD 也提供全系列 64 位产品。 o AMD 雷鸟(TM) (Thunderbird)处理器 o AMD 钻龙(TM) (Duron)处理器可以说是雷鸟的精简便宜版,架构和雷鸟处理器一样,其差别除了时脉较低之外,就是内建的L2 Cache,只有64K 。
INTEL
2000年:英特尔奔腾4(Pentium 4)处理器 基于英特尔奔腾4处理器的个人电脑用户可以创作专业品质的;通过互联网发送像电视一样的视频;使用实时视频语音工具进行交流;实时渲染3D图形;为 MP3 播放器快速编码音乐;在与互联网进行连接的状态下同时运行多个多媒体应用。该处理器最初推出时就拥有4200万个晶体管和仅为018微米的电路线。 英特尔首款微处理器4004的运行速率为108KHz,而现今的英特尔奔腾4处理器的初速率已经达到了15GHz,如果汽车的速度也能有同等提升的话,那么从旧金山开车到纽约只需要13秒。 2001年:英特尔至强(Xeon)处理器 英特尔至强处理器的应用目标是那些即将出现的高性能和中端双路工作站、以及双路和多路配置的服务器。该平台为客户提供了一种兼具高性能和低价格优势的全新 *** 作系统和应用选择。与基于英特尔 奔腾III至强处理器的系统相比,采用英特尔至强处理器的工作站根据应用和配置的不同,其性能预计可提升30%到90%左右。该处理器基于英特尔NetBurst 架构,设计用于为视频和音频应用、高级互联网技术及复杂3D图形提供所需要的计算动力。 2001年:英特尔安腾(Itanium)处理器 英特尔安腾处理器是英特尔推出的64位处理器家族中的首款产品。该处理器是在基于英特尔简明并行指令计算(EPIC)设计技术的全新架构之基础上开发制造的,设计用于高端、企业级服务器和工作站。该处理器能够为要求最苛刻的企业和高性能计算应用(包括电子商务安全交易、大型数据库、计算机辅助的机械工程以及精密的科学和工程计算)提供全球最出色的性能。 2002年:英特尔安腾2处理器(Itanium2) Intel Pentium 4 /Hyper Threading处理器 英特尔安腾2处理器是安腾处理器家族的第二位成员,同样是一款企业用处理器。该处理器家族为数据密集程度最高、业务最关键和技术要求最高的计算应用提供英特尔 架构的出色性能及规模经济等优势。该处理器能为数据库、计算机辅助工程、网上交易安全等提供领先的性能。 英特尔推出新款Intel Pentium 4处理器内含创新的Hyper-Threading(HT)超执行绪技术。超执行绪技术打造出新等级的高效能桌上型计算机,能同时快速执行多项运算应用, 或针对支持多重执行绪的软件带来更高的效能。超执行绪技术让计算机效能增加25%。除了为桌上型计算机使用者提供超执行绪技术外,英特尔亦达成另一项计算 机里程碑,就是推出运作时脉达306GHz的Pentium 4处理器,是首款每秒执行30亿个运算周期的商业微处理器,如此优异的性能要归功于当时业界最先进的013微米制程技术,翌年,内建超执行绪技术的 Intel Pentium4处理器时脉达到32GHz。 2003年:英特尔 奔腾 M(Pentium M) /赛扬 M (Celeron M)处理器 英特尔奔腾M处理器,英特尔855芯片组家族以及英特尔PRO/无线2100网卡是英特尔迅驰 移动计算技术的三大组成部分。英特尔迅驰移动计算技术专门设计用于便携式计算,具有内建的无线局域网能力和突破性的创新移动性能。该处理器支持更耐久的电池使用时间,以及更轻更薄的笔记本电脑造形。 2005年:Intel Pentium D 处理器 首颗内含2个处理核心的Intel Pentium D处理器登场,正式揭开x86处理器多核心时代。(绰号胶水双核,被别人这样叫是有原因的,PD由于高频低能噪音大,所以才有这个称号) 2005年:Intel Core处理器 这是英特尔向酷睿架构迈进的第一步。但是,酷睿处理器并没有采用酷睿架构,而是介于NetBurst和Core之间(第一个基于Core架构的处理器是酷睿2)。最初酷睿处理器是面向移动平台的,它是英特尔迅驰3的一个模块,但是后来苹果转向英特尔平台后推出的台式机就是采用的酷睿处理器。 酷睿使双核技术在移动平台上第一次得到实现。与后来的酷睿2类似,酷睿仍然有数个版本:Duo双核版,Solo单核版。其中还有数个低电压版型号以满足对节电要求苛刻的用户的要求。 2006年:Intel Core 2 (酷睿2,俗称“扣肉”)/ 赛扬 Duo 处理器 Core微架构桌面/移动处理器:桌面处理器核心代号Conroe。将命名为Core 2 Duo/Extreme家族,其E6700 26GHz型号比先前推出之最强的Intel Pentium D 960(36GHz)处理器,在效能方面提升了40%,省电效率亦增加40%,Core 2 Duo处理器内含291亿个晶体管。移动处理器核心代号Merom。是迅驰35和迅驰4的处理器模块。当然这两种酷睿2有区别,最主要的就是将FSB由667MHz/533MHz提升到了800MHz。

发展历程;
Duron 900~1300:2001年5月~2002年1月
Intel
Celeron(II)长期以来的竞争对手之后也推出了加强版。采用Morgan核心的Duron加入了SSE和3DNow+等新指令集支持能力。它的晶体管数增加到了2,518万,制程和外频则保持不变。
Morgan核心的Duron12G
Athlon XP 1500+~2100+:2001年10月~2002年3月
Thunderbird核心的后继者就是这款Palomino核心。在推出这款处理器的同时,AMD也发表了新的型号标示系统,之后的产品型号将不直接以处理器时钟频率来标示。Palomino仍旧采用018微米制程生产,晶体管数则增加到了3750万。另外Palomino也具备了一些新功能,像是热敏二极管防护机能等,不过一开始还没有主板能够支持。从Palomino核心开始,AMD为Athlon加入了SSE指令集的支持能力。至于高速缓存方面则没有任何改变。
和2 GHz Intel P4互相较劲:Palomino核心的Athlon XP 2000+
Athlon XP 1700+~2100+:2002年4月~2002年6月
随着Thoroughbred"A"核心的发表,AMD将Athlo的制程转换到了013微米。最大耗电量仍旧相当接近先前版本的处理器。
Athlon XP 1700+~2800+:2002年6月~2002年10月
AMD在Thoroughbred核心上做了许多改变:这款Thoroughbred"B"和"A"版核心不同,内部连接层数从7层加到了8层,而且外频上也有些差异。XP
1700+到XP 2400+等型号仍旧跑133外频,而XP 2600+和XP 2800+则能够上到166外频。
Thoroughbred B核心的Athlon XP 2200+
Athlon XP 2500+~3000+:2003年1月至2004年
Barton核心将是AMD Athlon最后一阶段的进化。和上一版本的处理器相比,它的L2高速缓存加倍到了512
KB,但同时时钟频率也稍稍降低了一些(和上一版本同型号相比)。它的晶体管数达到了5430万,耗电量则为743。这也是AMD在同一世代处理器中,首次出现同型号CPU比前一版本性能稍低的状况。
2004年,SEMPRON,462阵 166外频 754针SEMPRON 754针ATHLON
2005 64位CPU, 754针SEMPRON 754针ATHLON 939针SEMPRON ATHLON
2006 AM2接口--940针 SEMPRON ATHLON以及ATHLON X2系列
对应名称和INTEL对比
闪龙Sempron 对应赛扬系列
速龙Athlon 对应奔腾系列
毒龙Duron 对应赛扬系列,已经淡出市场,被闪龙取代
酷龙这个好像没有,好像很多厂商用这个名字滥竽充数作为自己电脑的品牌,说明自己用了AMD的CPU。
皓龙Opteron 最新型号,将来的主打,对应奔腾系列
这些是台式机
笔记本上还有很多,炫龙Turion等等。早期的速龙Althon(雷鸟thunderbred)>毒龙duron
近期的速龙Althon>闪龙Sempron(包括462针脚和754针脚以及939针脚)
皓龙也是新Althon的一种产品,基于双核的,性能最为强大
Intel:
奔腾(Pentuim)
迅驰(Centrino)
赛扬(Celeron)
酷睿(Core)
扣肉(Conroe)
Amd
毒龙(Duron)
速龙/阿斯龙(Athlon)
闪龙(Sempron)
皓龙(Opteron)
炫龙(Turion)


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/zz/13349360.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-07-19
下一篇 2023-07-19

发表评论

登录后才能评论

评论列表(0条)

保存