无线mesh网络的网络结构

无线mesh网络的网络结构,第1张

无线Mesh 网络是一种与传统的无线网络完全不同的网络。传统的无线接入技术中,主要采用点到点或者点到多点的拓扑结构。这种拓扑结构中一般都存在一个中心节点,例如移动通信系统中的基站、80211无线局域网(WLAN)中的接入点(AP)等等。中心节点与各个无线终端通过单跳无线链路相连,控制各无线终端对无线网络的访问;同时,又通过有线链路与有线骨干网相连,提供到骨干网的连接。而在无线Mesh网络中,采用网状Mesh拓扑结构,是一种多点到多点网络拓扑结构。在这种Mesh网络结构中,各网络节点通过相邻其他网络节点,以无线多跳方式相连。
在WMN中包括两种类型的节点:无线Mesh路由器和无线Mesh用户端。WMN的系统结构根据节点功能的不同分为3类:骨干网Mesh结构、客户端Mesh结构、混合结构 。
骨干网Mesh结构是由Mesh路由器网状互连形成的,无线Mesh骨干网再通过其中的Mesh路由器与外部网络相连。Mesh路由器除了具有传统的无线路由器的网关、中继功能外,还具有支持Mesh网络互连的路由功能,可以通过无线多跳通信,以低得多的发射功率获得同样的无线覆盖范围。
客户端Mesh结构是由Mesh用户端之间互连构成一个小型对等通信网络,在用户设备间提供点到点的服务。Mesh网用户终端可以是手提电脑、手机、PDA等装有无线网卡、天线的用户设备。这种结构实际上就是一个Ad hoc网络,可以在没有或不便使用现有的网络基础设施的情况下提供一种通信支撑。
Mesh客户端可以通过Mesh路由器接入骨干Mesh网络形成Mesh网络的混合结构,如图1所示,其中虚线和实线分别表示无线和有线连接。这种结构提供与其他一些网络结构的连接,增强了连接性,扩大了覆盖范围。

你的描述实在是不知道从哪方面回答你,就先给你简单介绍下常见的三种吧!
一、宽带路由器组网方式
这种组网方式需要购买一台共享上网设备-宽带路由器来执行网络的NAT转换功能,从而实现共享上网的目的。一般市场上销售的宽带路由器都提供4个LAN端口,可同时挂接4台计算机实现共享上网,基本都是百元左右,从每端口的成本考虑是优于双机互联共享上网方式的,且具备很多双机共享上网不能实现的功能,是我们强烈推荐的一种组网方式。
二、无线宽带路由器组网方式
无线宽带路由器组网方式比较适合不想在家中进行网络布线的用户,同时家用的无线宽带路由器一般都提供4个LAN端口,可以实现无线网络和有线网络的无缝连接。但这种组网方式对于环境的要求较高,屏蔽比较好或者连接的距离较远时,信号的覆盖范围和强度也会相应有所下降(某种意义上来说,无线组网只能是有线组网的一种补充,而不能做为首选的组网方式)且价格比宽带路由器要贵近百元,用户可以根据自己的实际需要来选择。
三、双网卡互联组网方式
在宽带路由器没有出现以前,双网卡互联组网曾经风靡一时,受到了很多家庭组网用户的青睐。如下图,这种方式的组网使用一台机器安装代理服务器软件,为另一台计算机提供共享服务,实现NAT转换,从而达到共享上网的目的。
组网建议
1、简单实用型用户
这类用户可以采用双网卡互连组网方式不需要太多专业知识,可以非常简单的组建共享网络,且如果需要组网的两台机器都具备集成网卡,组网成本也比较低廉。
2、经济适用型用户
这类用户可以选择使用有线宽带路由器组建共享网络,但需要对宽带路由器的功能有所了解,使用宽带路由器组网如果仅仅实现上网功能非常简单,且平均端口价格要优于其他两种组网方式,是我们比较推荐的一种。
3、时尚简约型
如果你的房间无法进行网络布线,或者你喜欢使用时尚的产品,再或者你对价格无所谓,我们推荐用户可以使用无线组网方式,这种方式时尚简约,不需要重新布线。当然也存在很多缺点,所以我们建议大家根据自己的需要来进行选择。

物联网应用中的无线技术有多种,可组成局域网或广域网。组成局域网的无线技术主要有24GHz的WiFi,蓝牙、Zigbee等,组成广域网的无线技术主要有2G/3G/4G等。这些无线技术,优缺点非常明显,可如下图总结。在低功耗广域网(Low Power Wide Area Network,LPWAN)产生之前,似乎远距离和低功耗两者之间只能二选一。当采用LPWAN技术之后,设计人员可做到两者都兼顾,最大程度地实现更长距离通信与更低功耗,同时还可节省额外的中继器成本。

LoRa 是LPWAN通信技术中的一种,是美国Semtech公司采用和推广的一种基于扩频技术的超远距离无线传输方案。这一方案改变了以往关于传输距离与功耗的折衷考虑方式,为用户提供一种简单的能实现远距离、长电池寿命、大容量的系统,进而扩展传感网络。目前,LoRa 主要在全球免费频段运行,包括433、868、915 MHz等。

LoRa技术具有远距离、低功耗(电池寿命长)、多节点、低成本的特性。

下图以USA情况为例,从灵敏度、链路预算、覆盖范围、传输速率、发送电流、待机电流、接收电流、2000mAh电池使用寿命、定位、抗干扰性、拓扑结构、最大终端连接数等参数上比较了Sigfox、LTE-M、ZigBee、WLAN、80211ah和LoRa的区别。后续的LoRa技术小型科普文(下)将具体解释以上的部分参数。
LoRa网络构成

LoRa网络主要由终端(可内置LoRa模块)、网关(或称基站)、Server和云四部分组成。应用数据可双向传输。

LoRa联盟LoRa联盟是2015年3月Semtech牵头成立的一个开放的、非盈利的组织,发起成员还有法国Actility,中国AUGTEK和荷兰皇家电信kpn等企业。不到一年时间,联盟已经发展成员公司150余家,其中不乏IBM、思科、法国Orange等重量级产商。产业链(终端硬件产商、芯片产商、模块网关产商、软件厂商、系统集成商、网络运营商)中的每一环均有大量的企业,这种技术的开放性,竞争与合作的充分性都促使了LoRa的快速发展与生态繁盛。

网络部署

目前LoRa网络已经在世界多地进行试点或部署。据LoRa Alliance早先公布的数据,已经有9个国家开始建网,56个国家开始进行试点。中国AUGTEK在京杭大运河完成284个基站的建设,覆盖1300Km流域;
美国网络运营商Senet于2015年中在北美完成了50个基站的建设、覆盖15,000平方英里(约38850平方千米),预计在第一阶段完成超过200个基站架设;
法国电信Orange宣布在2016年初在法国建网;
荷兰皇家电信kpn宣布将在新西兰建网,在2016年前达到50%覆盖率;
印度Tata宣布将在Mumbai和Delhi建网;
Telstra宣布将在墨尔本试点……(后续的文章将详细介绍部分公司利用LoRa技术做出的应用)

LoRaWAN协议

LoRaWAN是 LoRa联盟推出的一个基于开源的MAC层协议的低功耗广域网(Low Power Wide Area Network, LPWAN)标准。这一技术可以为电池供电的无线设备提供局域、全国或全球的网络。LoRaWAN瞄准的是物联网中的一些核心需求,如安全双向通讯、移动通讯和静态位置识别等服务。该技术无需本地复杂配置,就可以让智能设备间实现无缝对接互 *** 作,给物联网领域的用户、开发者和企业自由 *** 作权限。

LoRaWAN网络架构是一个典型的星形拓扑结构,在这个网络架构中,LoRa网关是一个透明传输的中继,连接终端设备和后端中央服务器。网关与服务器间通过标准IP连接,终端设备采用单跳与一个或多个网关通信。所有的节点与网关间均是双向通信,同时也支持云端升级等 *** 作以减少云端通讯时间。终端与网关之间的通信是在不同频率和数据传输速率基础上完成的,数据速率的选择需要在传输距离和消息时延之间权衡。由于采用了扩频技术,不同传输速率的通信不会互相干扰,且还会创建一组“虚拟化”的频段来增加网关容量。LoRaWAN的数据传输速率范围为03 kbps至375 kbps,为了最大化终端设备电池的寿命和整个网络容量,LoRaWAN网络服务器通过一种速率自适应(Adaptive Data Rate , ADR)方案来控制数据传输速率和每一终端设备的射频输出功率。全国性覆盖的广域网络瞄准的是诸如关键性基础设施建设、机密的个人数据传输或社会公共服务等物联网应用。关于安全通信,LoRaWAN一般采用多层加密的方式来解决:一、独特的网络密钥(EU164),保证网络层安全;
二、独特的应用密钥(EU164),保证应用层终端到终端之间的安全;
三、属于设备的特别密钥(EUI128)。LoRaWAN网络根据实际应用的不同,把终端设备划分成A/B/C三类:Class A:双向通信终端设备。这一类的终端设备允许双向通信,每一个终端设备上行传输会伴随着两个下行接收窗口。终端设备的传输槽是基于其自身通信需求,其微调是基于一个随机的时间基准(ALOHA协议)。Class A所属的终端设备在应用时功耗最低,终端发送一个上行传输信号后,服务器能很迅速地进行下行通信,任何时候,服务器的下行通信都只能在上行通信之后。

Class B:具有预设接收槽的双向通信终端设备。这一类的终端设备会在预设时间中开放多余的接收窗口,为了达到这一目的,终端设备会同步从网关接收一个Beacon,通过Beacon将基站与模块的时间进行同步。这种方式能使服务器知晓终端设备正在接收数据。

Class C:具有最大接收槽的双向通信终端设备。这一类的终端设备持续开放接收窗口,只在传输时关闭。

LoRa技术要点

一般说来,传输速率、工作频段和网络拓扑结构是影响传感网络特性的三个主要参数。传输速率的选择将影响系统的传输距离和电池寿命;
工作频段的选择要折中考虑频段和系统的设计目标;
而在FSK系统中,网络拓扑结构的选择是由传输距离要求和系统需要的节点数目来决定的。LoRa融合了数字扩频、数字信号处理和前向纠错编码技术,拥有前所未有的性能。此前,只有那些高等级的工业无线电通信会融合这些技术,而随着LoRa的引入,嵌入式无线通信领域的局面发生了彻底的改变。

前向纠错编码技术是给待传输数据序列中增加了一些冗余信息,这样,数据传输进程中注入的错误码元在接收端就会被及时纠正。这一技术减少了以往创建“自修复”数据包来重发的需求,且在解决由多径衰落引发的突发性误码中表现良好。一旦数据包分组建立起来且注入前向纠错编码以保障可靠性,这些数据包将被送到数字扩频调制器中。这一调制器将分组数据包中每一比特馈入一个“展扩器”中,将每一比特时间划分为众多码片。

即使噪声很大,LoRa也能从容应对LoRa调制解调器经配置后,可划分的范围为64-4096码片/比特,最高可使用4096码片/比特中的最高扩频因子(12)。相对而言,ZigBee仅能划分的范围为10-12码片/比特。通过使用高扩频因子,LoRa技术可将小容量数据通过大范围的无线电频谱传输出去。实际上,当你通过频谱分析仪测量时,这些数据看上去像噪音,但区别在于噪音是不相关的,而数据具有相关性,基于此,数据实际上可以从噪音中被提取出来。扩频因子越高,越多数据可从噪音中提取出来。在一个运转良好的GFSK接收端,8dB的最小信噪比(SNR)需要可靠地解调信号,采用配置AngelBlocks的方式,LoRa可解调一个信号,其信噪比为-20dB,GFSK方式与这一结果差距为28dB,这相当于范围和距离扩大了很多。在户外环境下,6dB的差距就可以实现2倍于原来的传输距离。

超强的链路预算,让信号飞的更远

为了有效地对比不同技术之间传输范围的表现,我们使用一个叫做“链路预算”的定量指标。链路预算包括影响接收端信号强度的每一变量,在其简化体系中包括发射功率加上接收端灵敏度。AngelBlocks的发射功率为100mW (20dBm),接收端灵敏度为-129dBm,总的链路预算为149dB。比较而言,拥有灵敏度-110dBm(这已是其极好的数据)的GFSK无线技术,需要5W的功率(37dBm)才能达到相同的链路预算值。在实践中,大多GFSK无线技术接收端灵敏度可达到-103dBm,在此状况下,发射端发射频率必须为46dBm或者大约36W,才能达到与LoRa类似的链路预算值。

因此,使用LoRa技术我们能够以低发射功率获得更广的传输范围和距离,这种低功耗广域技术正是我们所需的。

关于LPWAN

低功耗广域网络(Low Power Wide Area Network, LPWAN)是物联网中不可或缺的一部分,具有功耗低、覆盖范围广、穿透性强的特点,适用于每隔几分钟发送和接收少量数据的应用情况,如水运定位、路灯监测、停车位监测等等。LPWAN相关组织LoRa联盟目前在全球已有145位成员,其繁茂的生态系统让遵循LoRaWAN协议的设备具有很强的互 *** 作性。一个完全符合LoRaWAN标准的通讯网关可以接入5到10公里内上万个无线传感器节点,其效率远远高于传统的点对点轮询的通讯模式,也能大幅度降低节点通讯功耗。

1、大大的改善了接收的灵敏度,降低了功耗。
高达157db的链路预算使其通信距离可达15公里(与环境有关)。其接收电流仅10mA,睡眠电流200nA,这大大延迟了电池的使用寿命。
2、基于该技术的网关/集中器支持多信道多数据速率的并行处理,系统容量大。
如图2所示,网关是节点与IP网络之间的桥梁(通过2G/3G/4G或者Ethernet)。每个网关每天可以处理500万次各节点之间的通信(假设每次发送10Bytes,网络占用率10%)。如果把网关安装在现有移动通信基站的位置,发射功率20dBm(100mW),那么在建筑密集的城市环境可以覆盖2公里左右,而在密度较低的郊区,覆盖范围可达10公里。
3、基于终端和集中器/网关的系统可以支持测距和定位。
LoRa对距离的测量是基于信号的空中传输时间而非传统的RSSI(Received Signal Sterngth Ind-ication),而定位则基于多点(网关)对一点(节点)的空中传输时间差的测量。其定位精度可达5m(假设10km的范围)。
这些关键特征使得 LoRa技术非常适用于要求功耗低、距离远、大量连接以及定位跟踪等的物联网应用,如智能抄表、智能停车、车辆追踪、宠物跟踪、智慧农业、智慧工业、智慧城市、智慧社区等等应用和领域。


欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/zz/13492848.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-08-18
下一篇 2023-08-18

发表评论

登录后才能评论

评论列表(0条)

保存