ACM 关于ACM程序设计竞赛,需要掌握哪些知识点,最好能详细一点,谢谢高手们了。

ACM 关于ACM程序设计竞赛,需要掌握哪些知识点,最好能详细一点,谢谢高手们了。,第1张

实验对 π 值进行估算,这是计算 π 的的第一阶段。这种对 π 值的估算基本上都是以观察或实验为根据,是基于对一个圆的周长和直径的实际测量而得出的。在古代世界,实际上长期使用 π =3这个数值。最早见于文字记载的有基督教《圣经》中的章节,其上取圆周率为3。这一段描述的事大约发生在公元前950年前后。其他如巴比伦、印度、中国等也长期使用3这个粗略而简单实用的数值。在我国刘徽之前“圆径一而周三”曾广泛流传。我国第一部《周髀算经》中,就记载有圆“周三径一”这一结论。在我国,木工师傅有两句从古流传下来的口诀:叫做:“周三径一,方五斜七”,意思是说,直径为1的圆,周长大约是3,边长为5的正方形,对角线之长约为7。这正反映了早期人们对圆周率 π 和√2 这两个无理数的粗略估计。东汉时期官方还明文规定圆周率取3为计算面积的标准。后人称之为“古率”。

早期的人们还使用了其它的粗糙方法。如古埃及、古希腊人曾用谷粒摆在圆形上,以数粒数与方形对比的方法取得数值。或用匀重木板锯成圆形和方形以秤量对比取值……由此,得到圆周率的稍好些的值。如古埃及人应用了约四千年的 4 (8/9)2 = 31605。在印度,公元前六世纪,曾取 π= √10 = 3162。在我国东、西汉之交,新朝王莽令刘歆制造量的容器――律嘉量斛。刘歆在制造标准容器的过程中就需要用到圆周率的值。为此,他大约也是通过做实验,得到一些关于圆周率的并不划一的近似值。现在根据铭文推算,其计算值分别取为31547,31992,31498,32031比径一周三的古率已有所进步。人类的这种探索的结果,当主要估计圆田面积时,对生产没有太大影响,但以此来制造器皿或其它计算就不合适了。

几何法时期

凭直观推测或实物度量,来计算 π 值的实验方法所得到的结果是相当粗略的。

真正使圆周率计算建立在科学的基础上,首先应归功于阿基米德。他是科学地研究这一常数的第一个人,是他首先提出了一种能够借助数学过程而不是通过测量的、能够把 π 的值精确到任意精度的方法。由此,开创了圆周率计算的第二阶段。

圆周长大于内接正四边形而小于外切正四边形,因此 2√2 < π < 4 。

当然,这是一个差劲透顶的例子。据说阿基米德用到了正96边形才算出他的值域。

阿基米德求圆周率的更精确近似值的方法,体现在他的一篇论文《圆的测定》之中。在这一书中,阿基米德第一次创用上、下界来确定 π 的近似值,他用几何方法证明了“圆周长与圆直径之比小于 3+(1/7) 而大于 3 + (10/71) ”,他还提供了误差的估计。重要的是,这种方法从理论上而言,能够求得圆周率的更准确的值。到公元150年左右,希腊天文学家托勒密得出 π =31416,取得了自阿基米德以来的巨大进步。

割圆术。不断地利用勾股定理,来计算正N边形的边长。

在我国,首先是由数学家刘徽得出较精确的圆周率。公元263年前后,刘徽提出著名的割圆术,得出 π =314,通常称为“徽率”,他指出这是不足近似值。虽然他提出割圆术的时间比阿基米德晚一些,但其方法确有着较阿基米德方法更美妙之处。割圆术仅用内接正多边形就确定出了圆周率的上、下界,比阿基米德用内接同时又用外切正多边形简捷得多。另外,有人认为在割圆术中刘徽提供了一种绝妙的精加工办法,以致于他将割到192边形的几个粗糙的近似值通过简单的加权平均,竟然获得具有4位有效数字的圆周率 π =3927/1250 =31416。而这一结果,正如刘徽本人指出的,如果通过割圆计算得出这个结果,需要割到3072边形。这种精加工方法的效果是奇妙的。这一神奇的精加工技术是割圆术中最为精彩的部分,令人遗憾的是,由于人们对它缺乏理解而被长期埋没了。

恐怕大家更加熟悉的是祖冲之所做出的贡献吧。对此,《隋书·律历志》有如下记载:“宋末,南徐州从事祖冲之更开密法。以圆径一亿为丈,圆周盈数三丈一尺四寸一分五厘九毫二秒七忽,朒数三丈一尺四寸一分五厘九毫二秒六忽,正数在盈朒二限之间。密率:圆径一百一十三,圆周三百五十五。约率,圆径七,周二十二。”

这一记录指出,祖冲之关于圆周率的两大贡献。其一是求得圆周率

31415926 < π < 31415927

其二是,得到 π 的两个近似分数即:约率为22/7;密率为355/113。

他算出的 π 的8位可靠数字,不但在当时是最精密的圆周率,而且保持世界记录九百多年。以致于有数学史家提议将这一结果命名为“祖率”。

这一结果是如何获得的呢?追根溯源,正是基于对刘徽割圆术的继承与发展,祖冲之才能得到这一非凡的成果。因而当我们称颂祖冲之的功绩时,不要忘记他的成就的取得是因为他站在数学伟人刘徽的肩膀上的缘故。后人曾推算若要单纯地通过计算圆内接多边形边长的话,得到这一结果,需要算到圆内接正12288边形,才能得到这样精确度的值。祖冲之是否还使用了其它的巧妙办法来简化计算呢?这已经不得而知,因为记载其研究成果的著作《缀术》早已失传了。这在中国数学发展史上是一件极令人痛惜的事。

中国发行的祖冲之纪念邮票

祖冲之的这一研究成果享有世界声誉:巴黎“发现宫”科学博物馆的墙壁上著文介绍了祖冲之求得的圆周率,莫斯科大学礼堂的走廊上镶嵌有祖冲之的大理石塑像,月球上有以祖冲之命名的环形山……

对于祖冲之的关于圆周率的第二点贡献,即他选用两个简单的分数尤其是用密率来近似地表示 π 这一点,通常人们不会太注意。然而,实际上,后者在数学上有更重要的意义。

密率与 π 的近似程度很好,但形式上却很简单,并且很优美,只用到了数字1、3、5。数学史家梁宗巨教授验证出:分母小于16604的一切分数中,没有比密率更接近 π 的分数。在国外,祖冲之死后一千多年,西方人才获得这一结果。

可见,密率的提出是一件很不简单的事情。人们自然要追究他是采用什么办法得到这一结果的呢?他是用什么办法把圆周率从小数表示的近似值化为近似分数的呢?这一问题历来为数学史家所关注。由于文献的失传,祖冲之的求法已不为人知。后人对此进行了各种猜测。

让我们先看看国外历史上的工作,希望能够提供出一些信息。

1573年,德国人奥托得出这一结果。他是用阿基米德成果22/7与托勒密的结果377/120用类似于加成法“合成”的:(377-22) / (120-7) = 355/113。

1585年,荷兰人安托尼兹用阿基米德的方法先求得:333/106 < π < 377/120,用两者作为 π 的母近似值,分子、分母各取平均,通过加成法获得结果:3 ((15+17)/(106+120) = 355/113。

两个虽都得出了祖冲之密率,但使用方法都为偶合,无理由可言。

在日本,十七世纪关孝和重要著作《括要算法》卷四中求圆周率时创立零约术,其实质就是用加成法来求近似分数的方法。他以3、4作为母近似值,连续加成六次得到祖冲之约率,加成一百十二次得到密率。其学生对这种按部就班的笨办法作了改进,提出从相邻的不足、过剩近似值就近加成的办法,(实际上就是我们前面已经提到的加成法)这样从3、4出发,六次加成到约率,第七次出现25/8,就近与其紧邻的22/7加成,得47/15,依次类推,只要加成23次就得到密率。

钱宗琮先生在《中国算学史》(1931年)中提出祖冲之采用了我们前面提到的由何承天首创的“调日法”或称加权加成法。他设想了祖冲之求密率的过程:以徽率157/50,约率22/7为母近似值,并计算加成权数x=9,于是 (157 + 22×,9) / (50+7×9) = 355/113,一举得到密率。钱先生说:“冲之在承天后,用其术以造密率,亦意中事耳。”

另一种推测是:使用连分数法。

由于求二自然数的最大公约数的更相减损术远在《九章算术》成书时代已流行,所以借助这一工具求近似分数应该是比较自然的。于是有人提出祖冲之可能是在求得盈 二数之后,再使用这个工具,将314159265表示成连分数,得到其渐近分数:3,22/7,333/106,355/113,102573/32650…

最后,取精确度很高但分子分母都较小的355/113作为圆周率的近似值。至于上面圆周率渐近分数的具体求法,这里略掉了。你不妨利用我们前面介绍的方法自己求求看。英国李约瑟博士持这一观点。他在《中国科学技术史》卷三第19章几何编中论祖冲之的密率说:“密率的分数是一个连分数渐近数,因此是一个非凡的成就。”

我国再回过头来看一下国外所取得的成果。

1150年,印度数学家婆什迦罗第二计算出 π= 3927/1250 = 31416。1424年,中亚细亚地区的天文学家、数学家卡西著《圆周论》,计算了3×228=805,306,368边内接与外切正多边形的周长,求出 π 值,他的结果是:

π=314159265358979325

有十七位准确数字。这是国外第一次打破祖冲之的记录。

16世纪的法国数学家韦达利用阿基米德的方法计算 π 近似值,用 6×216正边形,推算出精确到9位小数的 π 值。他所采用的仍然是阿基米德的方法,但韦达却拥有比阿基米德更先进的工具:十进位置制。17世纪初,德国人鲁道夫用了几乎一生的时间钻研这个问题。他也将新的十进制与早的阿基米德方法结合起来,但他不是从正六边形开始并将其边数翻番的,他是从正方形开始的,一直推导出了有262条边的正多边形,约4,610,000,000,000,000,000边形!这样,算出小数35位。为了记念他的这一非凡成果,在德国圆周率 π 被称为“鲁道夫数”。但是,用几何方法求其值,计算量很大,这样算下去,穷数学家一生也改进不了多少。到鲁道夫可以说已经登峰造极,古典方法已引导数学家们走得很远,再向前推进,必须在方法上有所突破。

17世纪出现了数学分析,这锐利的工具使得许多初等数学束手无策的问题迎刃而解。 π 的计算历史也随之进入了一个新的阶段。

分析法时期

这一时期人们开始摆脱求多边形周长的繁难计算,利用无穷级数或无穷连乘积来算 π 。

1593年,韦达给出

这一不寻常的公式是 π 的最早分析表达式。甚至在今天,这个公式的优美也会令我们赞叹不已。它表明仅仅借助数字2,通过一系列的加、乘、除和开平方就可算出 π 值。

接着有多种表达式出现。如沃利斯1650年给出:

1706年,梅钦建立了一个重要的公式,现以他的名字命名:

再利用分析中的级数展开,他算到小数后100位。

这样的方法远比可怜的鲁道夫用大半生时间才抠出的35位小数的方法简便得多。显然,级数方法宣告了古典方法的过时。此后,对于圆周率的计算像马拉松式竞赛,纪录一个接着一个:

1844年,达塞利用公式:

算到200位。

19世纪以后,类似的公式不断涌现, π 的位数也迅速增长。1873年,谢克斯利用梅钦的一系列方法,级数公式将 π 算到小数后707位。为了得到这项空前的纪录,他花费了二十年的时间。他死后,人们将这凝聚着他毕生心血的数值,铭刻在他的墓碑上,以颂扬他顽强的意志和坚韧不拔的毅力。于是在他的墓碑上留下了他一生心血的结晶: π 的小数点后707位数值。这一惊人的结果成为此后74年的标准。此后半个世纪,人们对他的计算结果深信不疑,或者说即便怀疑也没有办法来检查它是否正确。以致于在1937年巴黎博览会发现馆的天井里,依然显赫地刻着他求出的 π 值。

又过了若干年,数学家弗格森对他的计算结果产生了怀疑,其疑问基于如下猜想:在 π 的数值中,尽管各数字排列没有规律可循,但是各数码出现的机会应该相同。当他对谢克斯的结果进行统计时,发现各数字出现次数过于参差不齐。于是怀疑有误。他使用了当时所能找到的最先进的计算工具,从1944年5月到1945年5月,算了整整一年。1946年,弗格森发现第528位是错的(应为4,误为5)。谢克斯的值中足足有一百多位全都报了销,这把可怜的谢克斯和他的十五年浪费了的光阴全部一笔勾销了。

对此,有人曾嘲笑他说:数学史在记录了诸如阿基米德、费马等人的著作之余,也将会挤出那么一、二行的篇幅来记述1873年前谢克斯曾把 π 计算到小数707位这件事。这样,他也许会觉得自己的生命没有虚度。如果确实是这样的话,他的目的达到了。

人们对这些在地球的各个角落里作出不懈努力的人感到不可理解,这可能是正常的。但是,对此做出的嘲笑却是过于残忍了。人的能力是不同的,我们无法要求每个人都成为费马、高斯那样的人物。但成为不了伟大的数学家,并不意味着我们就不能为这个社会做出自己有限的贡献。人各有其长,作为一个精力充沛的计算者,谢克斯愿意献出一生的大部分时光从事这项工作而别无报酬,并最终为世上的知识宝库添了一小块砖加了一个块瓦。对此我们不应为他的不懈努力而感染并从中得到一些启发与教育吗?

1948年1月弗格森和伦奇两人共同发表有808位正确小数的 π 。这是人工计算 π 的最高记录。

计算机时期

1946年,世界第一台计算机ENIAC制造成功,标志着人类历史迈入了电脑时代。电脑的出现导致了计算方面的根本革命。1949年,ENIAC根据梅钦公式计算到2035(一说是2037)位小数,包括准备和整理时间在内仅用了70小时。计算机的发展一日千里,其记录也就被频频打破。

ENIAC:一个时代的开始

1973年,有人就把圆周率算到了小数点后100万位,并将结果印成一本二百页厚的书,可谓世界上最枯燥无味的书了。1989年突破10亿大关,1995年10月超过64亿位。1999年9月30日,《文摘报》报道,日本东京大学教授金田康正已求到20615843亿位的小数值。如果将这些数字打印在A4大小的复印纸上,令每页印2万位数字,那么,这些纸摞起来将高达五六百米。来自最新的报道:金田康正利用一台超级计算机,计算出圆周率小数点后一兆二千四百一十一亿位数,改写了他本人两年前创造的纪录。据悉,金田教授与日立制作所的员工合作,利用目前计算能力居世界第二十六位的超级计算机,使用新的计算方法,耗时四百多个小时,才计算出新的数位,比他一九九九年九月计算出的小数点后二千六百一十一位提高了六倍。圆周率小数点后第一兆位数是二,第一兆二千四百一十一亿位数为五。如果一秒钟读一位数,大约四万年后才能读完。

不过,现在打破记录,不管推进到多少位,也不会令人感到特别的惊奇了。实际上,把 π 的数值算得过分精确,应用意义并不大。现代科技领域使用的 π 值,有十几位已经足够。如果用鲁道夫的35位小数的 π 值计算一个能把太阳系包围起来的圆的周长,误差还不到质子直径的百万分之一。我们还可以引美国天文学家西蒙·纽克姆的话来说明这种计算的实用价值:

“十位小数就足以使地球周界准确到一英寸以内,三十位小数便能使整个可见宇宙的四周准确到连最强大的显微镜都不能分辨的一个量。”

那么为什么数学家们还象登山运动员那样,奋力向上攀登,一直求下去而不是停止对 π 的探索呢?为什么其小数值有如此的魅力呢?

这其中大概免不了有人类的好奇心与领先于人的心态作怪,但除此之外,还有许多其它原因。

奔腾与圆周率之间的奇妙关系……

1、它现在可以被人们用来测试或检验超级计算机的各项性能,特别是运算速度与计算过程的稳定性。这对计算机本身的改进至关重要。就在几年前,当Intel公司推出奔腾(Pentium)时,发现它有一点小问题,这问题正是通过运行 π 的计算而找到的。这正是超高精度的 π 计算直到今天仍然有重要意义的原因之一。

2、 计算的方法和思路可以引发新的概念和思想。虽然计算机的计算速度超出任何人的想象,但毕竟还需要由数学家去编制程序,指导计算机正确运算。实际上,确切地说,当我们把 π 的计算历史划分出一个电子计算机时期时,这并非意味着计算方法上的改进,而只是计算工具有了一个大飞跃而已。因而如何改进计算技术,研究出更好的计算公式,使公式收敛得更快、能极快地达到较大的精确度仍是数学家们面对的一个重要课题。在这方面,本世纪印度天才数学家拉马努扬得出了一些很好的结果。他发现了许多能够迅速而精确地计算 π 近似值的公式。他的见解开通了更有效地计算 π 近似值的思路。现在计算机计算 π 值的公式就是由他得到的。至于这位极富传奇色彩的数学家的故事,在这本小书中我们不想多做介绍了。不过,我希望大家能够明白 π 的故事讲述的是人类的胜利,而不是机器的胜利。

3、还有一个关于 π 的计算的问题是:我们能否无限地继续算下去?答案是:不行!根据朱达偌夫斯基的估计,我们最多算1077位。虽然,现在我们离这一极限还相差很远很远,但这毕竟是一个界限。为了不受这一界限的约束,就需要从计算理论上有新的突破。前面我们所提到的计算,不管用什么公式都必须从头算起,一旦前面的某一位出错,后面的数值完全没有意义。还记得令人遗憾的谢克斯吗?他就是历史上最惨痛的教训。

4、于是,有人想能否计算时不从头开始,而是从半截开始呢?这一根本性的想法就是寻找并行算法公式。1996年,圆周率的并行算法公式终于找到,但这是一个16进位的公式,这样很容易得出的1000亿位的数值,只不过是16进位的。是否有10进位的并行计算公式,仍是未来数学的一大难题。

5、作为一个无穷数列,数学家感兴趣的把 π 展开到上亿位,能够提供充足的数据来验证人们所提出的某些理论问题,可以发现许多迷人的性质。如,在 π 的十进展开中,10个数字,哪些比较稀,哪些比较密? π 的数字展开中某些数字出现的频率会比另一些高吗?或许它们并非完全随意?这样的想法并非是无聊之举。只有那些思想敏锐的人才会问这种貌似简单,许多人司空见惯但却不屑发问的问题。

6、数学家弗格森最早有过这种猜想:在 π 的数值式中各数码出现的概率相同。正是他的这个猜想为发现和纠正向克斯计算 π 值的错误立下了汗马功劳。然而,猜想并不等于现实。弗格森想验证它,却无能为力。后人也想验证它,也是苦于已知的 π 值的位数太少。甚至当位数太少时,人们有理由对猜想的正确性做出怀疑。如,数字0的出现机会在开始时就非常少。前50位中只有1个0,第一次出现在32位上。可是,这种现象随着数据的增多,很快就改变了:100位以内有8个0;200位以内有19个0;……1000万位以内有999,440个0;……60亿位以内有599,963,005个0,几乎占1/10。

其他数字又如何呢?结果显示,每一个都差不多是1/10,有的多一点,有的少一点。虽然有些偏差,但都在1/10000之内。

7、人们还想知道: π 的数字展开真的没有一定的模式吗?我们希望能够在十进制展开式中通过研究数字的统计分布,寻找任何可能的模型――如果存在这种模型的话,迄今为止尚未发现有这种模型。同时我们还想了解: π 的展开式中含有无穷的样式变化吗?或者说,是否任何形式的数字排列都会出现呢?著名数学家希尔伯特在没有发表的笔记本中曾提出下面的问题: π 的十进展开中是否有10个9连在一起?以现在算到的60亿位数字来看,已经出现:连续6个9连在一起。希尔伯特的问题答案似乎应该是肯定的,看来任何数字的排列都应该出现,只是什么时候出现而已。但这还需要更多 π 的数位的计算才能提供切实的证据。

8、在这方面,还有如下的统计结果:在60亿数字中已出现连在一起的8个8;9个7;10个6;小数点后第710150位与3204765位开始,均连续出现了七个3;小数点52638位起连续出现了14142135这八个数字,这恰是的前八位;小数点后第2747956位起,出现了有趣的数列876543210,遗憾的是前面缺个9;还有更有趣的数列123456789也出现了。

如果继续算下去,看来各种类型的数字列组合可能都会出现。

拾零: π 的其它计算方法

在1777年出版的《或然性算术实验》一书中,蒲丰提出了用实验方法计算 π 。这个实验方法的 *** 作很简单:找一根粗细均匀,长度为 d 的细针,并在一张白纸上画上一组间距为 l 的平行线(方便起见,常取 l = d/2),然后一次又一次地将小针任意投掷在白纸上。这样反复地投多次,数数针与任意平行线相交的次数,于是就可以得到 π 的近似值。因为蒲丰本人证明了针与任意平行线相交的概率为 p = 2l/πd 。利用这一公式,可以用概率方法得到圆周率的近似值。在一次实验中,他选取 l = d/2 ,然后投针2212次,其中针与平行线相交704次,这样求得圆周率的近似值为 2212/704 = 3142。当实验中投的次数相当多时,就可以得到 π 的更精确的值。

1850年,一位叫沃尔夫的人在投掷5000多次后,得到 π 的近似值为31596。目前宣称用这种方法得到最好结果的是意大利人拉兹瑞尼。在1901年,他重复这项实验,作了3408次投针,求得 π 的近似值为31415929,这个结果是如此准确,以致于很多人怀疑其实验的真伪。如美国犹他州奥格登的国立韦伯大学的L·巴杰就对此提出过有力的质疑。

不过,蒲丰实验的重要性并非是为了求得比其它方法更精确的 π 值。蒲丰投针问题的重要性在于它是第一个用几何形式表达概率问题的例子。计算 π 的这一方法,不但因其新颖,奇妙而让人叫绝,而且它开创了使用随机数处理确定性数学问题的先河,是用偶然性方法去解决确定性计算的前导。

在用概率方法计算 π 值中还要提到的是:R·查特在1904年发现,两个随意写出的数中,互素的概率为6/π2。1995年4月英国《自然》杂志刊登文章,介绍英国伯明翰市阿斯顿大学计算机科学与应用数学系的罗伯特·马修斯,如何利用夜空中亮星的分布来计算圆周率。马修斯从100颗最亮的星星中随意选取一对又一对进行分析,计算它们位置之间的角距。他检查了100万对因子,据此求得 π 的值约为312772。这个值与真值相对误差不超过5%。

圆周率

圆周率是指平面上圆的周长与直径之比 (ratio of the circumference of a circle to the diameter) 。用符号π(读音:pài)表示。中国古代有圆率、周率、周等名称。(在一般计算时π=314)

圆周率的历史

古希腊欧几里得《几何原本》(约公元前3世纪初)中提到圆周率是常数,中国古算书《周髀算经》( 约公元前2世纪)中有“径一而周三”的记载,也认为圆周率是常数。历史上曾采用过圆周率的多种近似值,早期大都是通过实验而得到的结果,如古埃及纸草书(约公元前1700)中取π=(4/3)^4≈31604 。第一个用科学方法寻求圆周率数值的人是阿基米德,他在《圆的度量》(公元前3世纪)中用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,得到(3+(10/71))<π<(3+(1/7)) ,开创了圆周率计算的几何方法(亦称古典方法,或阿基米德方法),得出精确到小数点后两位的π值。

中国数学家刘徽在注释《九章算术》(263年)时只用圆内接正多边形就求得π的近似值,也得出精确到两位小数的π值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。

南北朝时代数学家祖冲之进一步得出精确到小数点后7位的π值(约5世纪下半叶),给出不足近似值31415926和过剩近似值31415927,还得到两个近似分数值,密率355/113和约率22/7。其中的密率在西方直到1573才由德国人奥托得到,1625年发表于荷兰工程师安托尼斯的著作中,欧洲称之为安托尼斯率。

阿拉伯数学家卡西在15世纪初求得圆周率17位精确小数值,打破祖冲之保持近千年的纪录。

德国数学家柯伦于1596年将π值算到20位小数值,后投入毕生精力,于1610年算到小数后35位数,该数值被用他的名字称为鲁道夫数。

1579年法国数学家韦达给出π的第一个解析表达式。

此后,无穷乘积式、无穷连分数、无穷级数等各种π值表达式纷纷出现,π值计算精度也迅速增加。1706年英国数学家梅钦计算π值突破100位小数大关。1873 年另一位英国数学家尚可斯将π值计算到小数点后707位,可惜他的结果从528位起是错的。到1948年英国的弗格森和美国的伦奇共同发表了π的808位小数值,成为人工计算圆周率值的最高纪录。

电子计算机的出现使π值计算有了突飞猛进的发展。1949年美国马里兰州阿伯丁的军队d道研究实验室首次用计算机(ENIAC)计算π值,一下子就算到2037位小数,突破了千位数。1989年美国哥伦比亚大学研究人员用克雷-2型和IBM-VF型巨型电子计算机计算出π值小数点后48亿位数,后又继续算到小数点后101亿位数,创下新的纪录。

除π的数值计算外,它的性质探讨也吸引了众多数学家。1761年瑞士数学家兰伯特第一个证明π是无理数。1794年法国数学家勒让德又证明了π2也是无理数。到1882年德国数学家林德曼首次证明了π是超越数,由此否定了困惑人们两千多年的「化圆为方」尺规作图问题。还有人对π的特征及与其它数字的联系进行研究。如1929年苏联数学家格尔丰德证明了eπ 是超越数等等。

圆周率的计算

古今中外,许多人致力于圆周率的研究与计算。为了计算出圆周率的越来越好的近似值,一代代的数学家为这个神秘的数贡献了无数的时间与心血。

十九世纪前,圆周率的计算进展相当缓慢,十九世纪后,计算圆周率的世界纪录频频创新。整个十九世纪,可以说是圆周率的手工计算量最大的世纪。

进入二十世纪,随着计算机的发明,圆周率的计算有了突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。

历史上最马拉松式的计算,其一是德国的Ludolph Van Ceulen,他几乎耗尽了一生的时间,计算到圆的内接正262边形,于1609年得到了圆周率的35位精度值,以至于圆周率在德国被称为Ludolph数;其二是英国的William Shanks,他耗费了15年的光阴,在1874年算出了圆周率的小数点后707位。可惜,后人发现,他从第528位开始就算错了。

把圆周率的数值算得这么精确,实际意义并不大。现代科技领域使用的圆周率值,有十几位已经足够了。如果用Ludolph Van Ceulen算出的35位精度的圆周率值,来计算一个能把太阳系包起来的一个圆的周长,误差还不到质子直径的百万分之一。以前的人计算圆周率,是要探究圆周率是否循环小数。自从1761年Lambert证明了圆周率是无理数,1882年Lindemann证明了圆周率是超越数后,圆周率的神秘面纱就被揭开了。

现在的人计算圆周率, 多数是为了验证计算机的计算能力,还有,就是为了兴趣。

圆周率的计算方法

古人计算圆周率,一般是用割圆法。即用圆的内接或外切正多边形来逼近圆的周长。Archimedes用正96边形得到圆周率小数点后3位的精度;刘徽用正3072边形得到5位精度;Ludolph Van Ceulen用正262边形得到了35位精度。这种基于几何的算法计算量大,速度慢,吃力不讨好。随着数学的发展,数学家们在进行数学研究时有意无意地发现了许多计算圆周率的公式。下面挑选一些经典的常用公式加以介绍。除了这些经典公式外,还有很多其它公式和由这些经典公式衍生出来的公式,就不一一列举了。

1、 Machin公式

[这个公式由英国天文学教授John Machin于1706年发现。他利用这个公式计算到了100位的圆周率。Machin公式每计算一项可以得到14位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。

Machinc 源程序

还有很多类似于Machin公式的反正切公式。在所有这些公式中,Machin公式似乎是最快的了。虽然如此,如果要计算更多的位数,比如几千万位,Machin公式就力不从心了。下面介绍的算法,在PC机上计算大约一天时间,就可以得到圆周率的过亿位的精度。这些算法用程序实现起来比较复杂。因为计算过程中涉及两个大数的乘除运算,要用FFT(Fast Fourier Transform)算法。FFT可以将两个大数的乘除运算时间由O(n2)缩短为O(nlog(n))。

2、 Ramanujan公式

1914年,印度数学家Srinivasa Ramanujan在他的论文里发表了一系列共14条圆周率的计算公式,这是其中之一。这个公式每计算一项可以得到8位的十进制精度。1985年Gosper用这个公式计算到了圆周率的17,500,000位。

1989年,David & Gregory Chudnovsky兄弟将Ramanujan公式改良成为:

这个公式被称为Chudnovsky公式,每计算一项可以得到15位的十进制精度。1994年Chudnovsky兄弟利用这个公式计算到了4,044,000,000位。Chudnovsky公式的另一个更方便于计算机编程的形式是:

3、AGM(Arithmetic-Geometric Mean)算法

Gauss-

伽罗华

伽罗华(Évariste Galois,公元1811年-公元1832年)是法国对函数论、方程式论和数论作出重要贡献的数学家,他的工作为群论(一个他引进的名词)奠定了基础;所有这些进展都源自他尚在校就读时欲证明五次多项式方程根数解(Solution by Radicals)的不可能性(其实当时已为阿贝尔(Abel)所证明,只不过伽罗华并不知道),和描述任意多项式方程可解性的一般条件的打算。虽然他己经发表了一些论文,但当他于1829年将论文送交法兰西科学院时,第一次所交论文却被柯西(Cauchy)遗失了,第二次则被傅立叶(Fourier)所遗失;他还与埃科尔综合技术学院(école Polytechnique)的口试主考人发生顶撞而被拒绝给予一个职位。在父亲自杀后,他放弃投身于数学生涯,注册担任辅导教师,结果因撰写反君主制的文章而被开除,且因信仰共和体制而两次下狱。他第三次送交科学院的论文亦为泊松(Poisson)所拒绝。伽罗华死于一次决斗,可能是被保皇派或警探所激怒而致,时年21岁。他被公认为数学界两个最具浪漫主义色彩的人物之一。

Galois小传:

1832年5月30日清晨,在巴黎的葛拉塞尔湖附近躺着一个昏迷的年轻人,过路的农民从q伤判断他是决斗后受了重伤,就把这个不知名的青年抬到医院。第二天早晨十点,这个可怜的年轻人离开了人世,数学史上最年轻、最富有创造性的头脑停止了思考。后来的一些著名数学家们说,他的死使数学的发展被推迟了几十年,他就是伽罗华。

天才的童年

1811年10月25日,伽罗华出生于法国巴黎郊区拉赖因堡伽罗瓦街的第54号房屋内。现在这所房屋的正面有一块纪念牌,上面写着:“法国著名数学家埃瓦里斯特•伽罗瓦生于此,卒年20岁,1811~1832年”。纪念牌是小镇的居民为了对全世界学者迄今公认的、曾有特殊功绩的、卓越的数学家——伽罗瓦表示敬意,于1909年6月设置的。

伽罗瓦的双亲都受过良好的教育。在父母的熏陶下,伽罗瓦童年时代就表现出有才能、认真、热心等良好的品格。其父尼古拉•加布里埃尔•伽罗瓦参与政界活动属自由党人,是拿破仑的积极支持者。主持过供少年就学的学校,任该校校长。又担任拉赖因堡15年常任市长,深受市民的拥戴。伽罗瓦曾向同监的难友勒斯拜——法国著名的政治家、化学家和医生说过:“父亲是他的一切”。可见父亲的政治态度和当时法国的革命热潮对伽罗瓦的成长和处事有较大的影响。

伽罗瓦的母亲玛利亚•阿代累达•伽罗瓦曾积极参与儿子的启蒙教育。作为古代文化的热烈爱好者,她把从拉丁和希腊文学中汲取来的英勇典范介绍给她儿子。1848年发表在《皮托雷斯克画报》上有关伽罗瓦的传记中,特别谈到“伽罗瓦的第一位教师是他的母亲,一个聪明兼有好教养的妇女,当他还在童稚时,她一直给他上课”。这就为伽罗瓦在中学阶段的学习和以后攀登数学高峰打下了坚实的基础。

1823年l0月伽罗瓦年满12岁时,离开了双亲,考入有名的路易•勒•格兰皇家中学。从他的老师们保存的有关他在中学生活的回忆录和笔记中,记载着伽罗瓦是位具有“杰出的才干”,“举止不凡”,但又“为人乖僻、古怪、过分多嘴”性格的人。我们认为这种性格说明他有个性,而且早已显露出强烈的求知欲的标志。

伽罗瓦在路易•勒•格兰皇家中学领奖学金,完全靠公费生活。在第四、第三和第二年级时他都是优等生,在希腊语作文总比赛中也获得好评,并且在1826年l0月转到修辞班学习。

但是第二学季一开始(伽罗瓦这时刚满15岁),由于教师们认为他的体格不够强壮,校长认为他的判断力还有待“成熟”,他不得不回到二年级。重修二年级,使伽罗瓦有机会毫无阻碍地被批准去上初级数学的补充课程。自此他把大部分时间和主要精力用来研究、探讨数学课本以外的高等数学。

伽罗华经常到图书馆阅读数学专著,特别对一些数学大师,如勒让德的《几何原理》和拉格朗日的《代数方程的解法》、《解析函数论》、《微积分学教程》进行了认真分析和研究,但他并未失去对其他科目的兴趣。

因此,当1827年伽罗瓦回到修辞班时,他的全面发展甚至比他的数学的天分在同学之中更加出人头地了。但是他对其它科目的教科书的内容以及教师所采用的教学法之潦草马虎感到愤怒。所以有的教师认为他被数学的鬼魅迷住了心窍,有的教师用七个字“平静会使他激怒”来形容他的行为。

这时伽罗瓦已经熟悉欧拉、高斯、雅可比的著作,这更提高了他的信心,他认为他能够做到的,不会比这些大数学家们少。到了学年末,他不再去听任何专业课了,而在独立地准备参加取得升入综合技术学校资格的竞赛考试。结果尽管考试失败,但1828年10月,他仍然从中学初级数学班跳到里夏尔的数学专业班。

路易•勒•格兰中学的数学专业班教师里夏尔,在科学史上,他作为一个很有才华的教师使人追念。里夏尔不仅讲课风格优雅,而且善于发掘天才。他遗留下的笔记中记载着:“伽罗瓦只宜在数学的尖端领域中工作”,“他大大地超过了全体同学”。

里夏尔帮助伽罗瓦于1828年在法国第一个专业数学杂志《纯粹与应用数学年报》三月号上,发表了他的第一篇论文—《周期连分数一个定理的证明》,并说服伽罗瓦向科学院递送备忘录。1829年,伽罗瓦在他中学学年快要结束时,把他研究的初步结果的论文提交给法国科学院。

1829年,中学学年结束后,伽罗瓦刚满18岁,他在报考巴黎综合技术学校时,由于在口试中主考的教授比内和勒费布雷•德•富尔西对伽罗瓦阐述的见解不理解,居然嘲笑他。伽罗瓦在提及这次考试时,曾写道,他不得不听“主考人的狂笑声”。据说“由于被狂笑声所激怒”,他把黑板擦布扔到主考人头上,或是因为他拒绝回答有关关于对数这样的过于简单的问题,所以再次遭到落选,伽罗瓦仍然是一个非正式的预备生。

1829年7月2日,正当伽罗瓦准备入学考试时,他的父亲由于受不了天主教牧师的攻击、诽谤而自杀了。这给了伽罗华很大的触动,他的思想开始倾向于共和主义。其后不久,伽罗华听从里夏尔的劝告决定进师范大学,这使他有可能继续深造,同时生活费用也有了着落。1829年10月25日伽罗华被作为预备生录取入学。

进入师范大学后的一年对伽罗瓦来说是最顺利的一年,1828年他的科学研究获得了初步成果。伽罗瓦写了几篇大文章,并提出自己的全部著作来应征科学院的数学特奖。但在这里,他又一次遭到了新挫折:伽罗瓦的手稿原来交给科学院常任秘书傅立叶,傅立叶收到手稿后不久就去世了。因而文章也被遗失了。这些著作的某些抄本落到数学杂志《费律萨克男爵通报》的杂志社手里,并在1830年的4月号和6月号上把它刊载了出来。

在师范大学学习的第一年,伽罗瓦结认了奥古斯特•舍瓦利叶,舍瓦利叶直到伽罗瓦临终前一直是他的唯一亲近的朋友。1830年7月,伽罗瓦将满19岁。他在师范大学的第一年功课行将结束。他这时写成的数学著作,已经使人有可能对他思想的独创性和敏锐性作出评价。

数学世界的顽强斗士

19世纪初,有一些数学问题一直困扰着当时的数学家们,而如何求解高次方程就是其中之一。

历史上人们很早就已经知道了一元一次和一元二次方程的求解方法。关于三次方程,我国在公元七世纪,也已经得到了一般的近似解法,这在唐朝数学家王孝通所编的《缉古算经》就有叙述。到了十三世纪,宋代数学家秦九韶在他所著的《数书九章》的“正负开方术”里,充分研究了数字高次方程的求正根法,也就是说,秦九韶那时候已得到了高次方程的一般解法。

在西方,直到十六世纪初的文艺复兴时期,才由意大利的数学家发现一元三次方程解的公式——卡当公式。

在数学史上,相传这个公式是意大利数学家塔塔里亚首先得到的,后来被米兰地区的数学家卡尔达诺(1501~1576)骗到了这个三次方程的解的公式,并发表在自己的著作里。所以现在人们还是叫这个公式为卡尔达诺公式(或称卡当公式),其实,它应该叫塔塔里亚公式。

三次方程被解出来后,一般的四次方程很快就被意大利的费拉里(1522~1560)解出。这就很自然的促使数学家们继续努力寻求五次及五次以上的高次方程的解法。遗憾的是这个问题虽然耗费了许多数学家的时间和精力,但一直持续了长达三个多世纪,都没有解决。法国数学家拉格朗日更是称这一问题是在“向人类的智慧挑战”。

1770年,拉格朗日精心分析了二次、三次、四次方程根式解的结构之后,提出了方程的预解式概念,并且还进一步看出预解式和方程的各个根在排列置换下的形式不变性有关,这时他认识到求解一般五次方程的代数方法可能不存在。此后,挪威数学家阿贝尔利用置换群的理论,给出了高于四次的一般代数方程不存在代数解的证明。

伽罗瓦通过改进数学大师拉格朗日的思想,即设法绕过拉氏预解式,但又从拉格朗日那里继承了问题转化的思想,即把预解式的构成同置换群联系起来的思想,并在阿贝尔研究的基础上,进一步发展了他的思想,把全部问题转化或归结为置换群及其子群结构的分析。

这个理论的大意是:每个方程对应于一个域,即含有方程全部根的域,称为这方程的伽罗华域,这个域对应一个群,即这个方程根的置换群,称为这方程的伽罗华群。伽罗华域的子域和伽罗华群的子群有一一对应关系;当且仅当一个方程的伽罗华群是可解群时,这方程是根式可解的。

1829年,伽罗华在他中学最后一年快要结束时,把关于群论初步研究结果的论文提交给法国科学院,科学院委托当时法国最杰出的数学家柯西作为这些论文的鉴定人。在1830年1月18日柯西曾计划对伽罗华的研究成果在科学院举行一次全面的意见听取会。他在一封信中写道:“今天我应当向科学院提交一份关于年轻的伽罗华的工作报告……但因病在家,我很遗憾未能出席今天的会议,希望你安排我参加下次会议,讨论已指明的议题。”然而,第二周当柯西向科学院宣读他自己的一篇论文时,并未介绍伽罗华的著作,这是一个非常微妙的“事故”。

1830年2月,伽罗华将他的研究成果比较详细地写成论文交上去了,以参加科学院的数学大奖评选,希望能够获奖。论文寄给当时科学院终身秘书傅立叶,但傅立叶在当年5月去世了,在他的遗物中未能发现伽罗华的手稿。就这样,伽罗华递交的两次数学论文都被遗失了。

1831年1月,伽罗华在寻求确定方程的可解性这个问题上,又得到一个结论,他写成论文提交给法国科学院。这篇论文是伽罗华关于群论的重要著作,当时负责审查的数学家泊阿松为理解这篇论文绞尽脑汁。传说泊阿松将这篇论文看了四个月,最后结论居然是“完全不能理解”。尽管借助于拉格朗日已证明的一个结果可以表明伽罗华所要证明的论断是正确的,但最后他还是建议科学院否定它。

对事业必胜的信念激励着年轻的伽罗华。虽然他的论文一再被丢失,得不到应有的支持,但他并没有灰心,他坚持他的科研成果,不仅一次又一次地想办法传播出去,还进一步向更广的领域探索。

天才的陨落

伽罗华诞生在拿破仑帝国时代,经历了波旁王朝的复辟时期,又赶上路易•腓力浦朝代初期,他是当时最先进的革命政治集团——共和派的秘密组织“人民之友”的成员,并发誓:“如果为了唤起人民需要我死,我愿意牺牲自己的生命”。

伽罗瓦敢于对政治上的动摇分子和两面派进行顽强的斗争,年轻热情的伽罗华对师范大学教育组织极为不满。由于他揭发了校长吉尼奥对法国七月革命政变的两面派行为,被吉尼奥的忠实朋友,皇家国民教育委员会顾问库申起草报告,皇家国民教育委员会1831年1月8日批准立即将伽罗瓦开除出师范大学。

之后,他进一步积极参加政治活动。1831年5月l0日,伽罗华以“企图暗杀国王”的罪名被捕。在6月15日陪审法庭上,由于共和党人的律师窦本的努力,伽罗瓦被宣告无罪当场获释。七月,被反动王朝视为危险分子的伽罗华在国庆节示威时再次被抓,被关在圣佩拉吉监狱,在这里庆祝过他的20岁生日,渡过了他生命的最后一年的大部分时间。

在监狱中伽罗华一方面与官方进行不妥协的斗争,另一面他还抓紧时间刻苦钻研数学。尽管牢房里条件很差,生活艰苦,他仍能静下心来在数学王国里思考。

伽罗瓦在圣佩拉吉监狱中写成的研究报告中写道:“把数学运算归类,学会按照难易程度,而不是按照它们的外部特征加以分类,这就是我所理解的未来数学家的任务,这就是我所要走的道路。”请注意到“把数学运算归类”这句话,道出了他的理想、他的道路。毋庸置疑,这句话系指点目前所称的群论。由于其后好几代数学家的工作,最终才实现了伽罗瓦的理想。正是他的著作,标志着旧数学史的结束和新数学史的开始。

l832年3月16日伽罗华获释后不久,年轻气盛的伽罗华为了一个舞女,卷入了一场他所谓的“爱情与荣誉”的决斗。伽罗华非常清楚对手的q法很好,自己难以摆脱死亡的命运,所以连夜给朋友写信,仓促地把自己生平的数学研究心得扼要写出,并附以论文手稿。

他不时的中断,在纸边空白处写上“我没有时间,我没有时间”,然后又接着写下一个极其潦草的大纲。他在天亮之前那最后几个小时写出的东西,为一个折磨了数学家们几个世纪的问题找到了真正的答案,并且开创了数学的一片新的天地。

伽罗华对自己的成果充满自信,他在给朋友舍瓦利叶的信中说:“我在分析方面做出了一些新发现。有些是关于方程论的;有些是关于整函数的……。公开请求雅可比或高斯,不是对这些定理的正确性,而是对这些定理的重要性发表意见。我希望将来有人发现,这些对于消除所有有关的混乱是有益的。”

第二天上午,在决斗场上,伽罗华被打穿了肠子。死之前,他对在他身边哭泣的弟弟说:“不要哭,我需要足够的勇气在20岁的时候死去”。他被埋葬在公墓的普通壕沟内,所以今天他的坟墓已无踪迹可寻。他不朽的纪念碑就是他的著作,由两篇被拒绝的论文和他在死前那个不眠之夜写下的潦草手稿组成。

历史学家们曾争论过这场决斗是一个悲惨遭的爱情事件的结局,还是出于政治动机造成的,但无论是哪一种,一位世界上最杰出的数学家在他20岁时被杀死了,他研究数学才只有五年。

群论——跨越时代的创造

伽罗华死后,按照他的遗愿,舍瓦利叶把他的信发表在《百科评论》中。他的论文手稿过了十四年后,也就是1846年,才由法国数学家刘维尔领悟到这些演算中迸发出的天才思想,他花了几个月的时间试图解释它的意义。刘维尔最后将这些论文编辑发表在他的极有影响的《纯粹与应用数学杂志》上,并向数学界推荐。1870年法国数学家约当根据伽罗华的思想,写了《论置换与代数方程》一书,在这本书里伽罗华的思想得到了进一步的阐述。

伽罗华最主要的成就是提出了群的概念,并用群论彻底解决了根式求解代数方程的问题,而且由此发展了一整套关于群和域的理论,为了纪念他,人们称之为伽罗华理论。正是这套理论创立了抽象代数学,把代数学的研究推向了一个新的里程。正是这套理论为数学研究工作提供了新的数学工具—群论。它对数学分析、几何学的发展有很大影响,并标志着数学发展现代阶段的开始。

伽罗瓦非常彻底地把全部代数方程可解性问题,转化或归结为置换群及其子群结构分析的问题。这是伽罗瓦工作中的第一个“突破”,他犹如划破黑夜长空的一颗瞬间即逝的彗星,开创了置换群论的研究,确立了代数方程的可解性理论,即后来称为的“伽罗瓦理论”,从而彻底解决了一般方程的根式解难题。

作为这个理论的推论,可以得出五次以上一般代数方程根式不可解,以及用圆规、直尺(无刻度的尺)三等分任意角和作倍立方体不可能等结论。

对伽罗华来说,他所提出并为之坚持的理论是一场对权威、对时代的挑战,他的“群”完全超越了当时数学界能理解的观念。也许正是由于年轻,他才敢于并能够以崭新的方式去思考,去描述他的数学世界。也正因如此,他才受到了冷遇。

在这里,我们后人感受到的是一种孤独与悲哀,一种来自智慧的孤独与悲哀。但是,历史的曲折并不能埋没真理的光辉。今天由伽罗华开始的群论,不仅对近代数学的各个方向,而且对物理学、化学的许多分支都产生了重大的影响。

克莱罗

Clairaut,Alexis-Claude(1713~1765)

法国数学家,物理学家。又译克莱洛。1713年5月7日生于巴黎,1765年5月17日卒于同地。9岁时,父亲就教他学习解析几何和微积分学,16岁被选入法国科学院。他在研究天体力学三体问题时,第一个给出了这个问题的近似解(1752~1754)。1705年,E哈雷曾预测哈雷彗星将在 1758年或1759年出现。克莱罗于1758年提前半年相当精确地计算了哈雷彗星到达近日点的日期,为此获彼得堡科学院的奖。克莱罗是最早研究二重曲率曲线的人之一,他还研究了曲面的平面截线。他在1734年建立了克莱罗微分方程。1739~1740年间证明了混合二阶偏导数的求导次序的可交换条件,还证明了一阶线性微分方程的积分因子的存在性问题。他在力学方面的工作还包括单摆振动等时性的证明和对运动中物体的动力学和相对运动的研究。

以上就是关于ACM 关于ACM程序设计竞赛,需要掌握哪些知识点,最好能详细一点,谢谢高手们了。全部的内容,包括:ACM 关于ACM程序设计竞赛,需要掌握哪些知识点,最好能详细一点,谢谢高手们了。、圆周率是谁发明的拜托各位了 3Q、怎么求圆周率等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址: https://outofmemory.cn/zz/9742025.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-01
下一篇 2023-05-01

发表评论

登录后才能评论

评论列表(0条)

保存