c++容器,成员函数Insert传递3个迭代器参数的使用问题。

c++容器,成员函数Insert传递3个迭代器参数的使用问题。,第1张

#include <vector>

vector属于std命名域的,因此需要通过命名限定,如下完成你的代码:

using std::vector

vector<int>vInts

或者连在一起,使用全名:

std::vector<int>vInts

建议使用全局的命名域方式:using namespace std

函数

表述

c.assign(beg,end)c.assign(n,elem)

将[begend)区间中的数据赋值给c。将n个elem的拷贝赋值给c。

c.at(idx)

传回索引idx所指的数据,如果idx越界,抛出out_of_range。

c.back()

传回最后一个数据,不检查这个数据是否存在。

c.begin()

传回迭代器中的第一个数据地址。

c.capacity()

返回容器中数据个数。

c.clear()

移除容器中所有数据。

c.empty()

判断容器是否为空。

c.end()

指向迭代器中的最后一个数据地址。

c.erase(pos)

c.erase(beg,end)

删除pos位置的数据,传回下一个数据的位置。

删除[beg,end)区间的数据,传回下一个数据的位置。

c.front()

传回第一个数据。

get_allocator

使用构造函数返回一个拷贝。

c.insert(pos,elem)

c.insert(pos,n,elem)

c.insert(pos,beg,end)

在pos位置插入一个elem拷贝,传回新数据位置。在pos位置插入n个elem数据。无返回值。在pos位置插入在[beg,end)区间的数据。无返回值。

c.max_size()

返回容器中最大数据的数量。

c.pop_back()

删除最后一个数据。

c.push_back(elem)

在尾部加入一个数据。

c.rbegin()

传回一个逆向队列的第一个数据。

c.rend()

传回一个逆向队列的最后一个数据的下一个位置。

c.resize(num)

重新指定队列的长度。

c.reserve()

保留适当的容量。

c.size()

返回容器中实际数据的个数。

c1.swap(c2)

swap(c1,c2)

将c1和c2元素互换。同上 *** 作。

vector<Elem>

cvector<Elem>c1(c2)

vector <Elem>c(n)

ector <Elem>c(n, elem)

vector <Elem>c(beg,end)

c.~ vector <Elem>()

创建一个空的vector。复制一个vector。创建一个vector,含有n个数据,数据均已缺省构造产生。创建一个含有n个elem拷贝的vector。创建一个以[begend)区间的vector。销毁所有数据,释放内存。

operator[]

返回容器中指定位置的一个引用。

创建一个vector

vector容器提供了多种创建方法,下面介绍几种常用的。

创建一个Widget类型的空的vector对象:

vector<Widget>vWidgets

创建一个包含500个Widget类型数据的vector:

vector<Widget>vWidgets(500)

创建一个包含500个Widget类型数据的vector,并且都初始化为0:

vector<Widget>vWidgets(500, Widget(0))

创建一个Widget的拷贝:

vector<Widget>vWidgetsFromAnother(vWidgets)

向vector添加一个数据

vector添加数据的缺省方法是push_back()。push_back()函数表示将数据添加到vector的尾部,并按需要来分配内存。例如:向vector<Widget>中添加10个数据,需要如下编写代码:

for(int i= 0i<10i++) {

vWidgets.push_back(Widget(i))

}

获取vector中制定位置的数据

vector里面的数据是动态分配的,使用push_back()的一系列分配空间常常决定于文件或一些数据源。如果想知道vector存放了多少数据,可以使用empty()。获取vector的大小,可以使用size()。例如,如果想获取一个vector v的大小,但不知道它是否为空,或者已经包含了数据,如果为空想设置为-1,你可以使用下面的代码实现:

int nSize = v.empty() ? -1 : static_cast<int>(v.size())

访问vector中的数据

使用两种方法来访问vector。

1、 vector::at()

2、 vector::operator[]

operator[]主要是为了与C语言进行兼容。它可以像C语言数组一样 *** 作。但at()是我们的首选,因为at()进行了边界检查,如果访问超过了vector的范围,将抛出一个例外。由于operator[]容易造成一些错误,所有我们很少用它,下面进行验证一下:

分析下面的代码:

vector<int>v

v.reserve(10)

for(int i=0i<7i++) {

v.push_back(i)

}

try {int iVal1 = v[7]

// not bounds checked - will not throw

int iVal2 = v.at(7)

// bounds checked - will throw if out of range

} catch(const exception&e) {

cout <<e.what()

}

删除vector中的数据

vector能够非常容易地添加数据,也能很方便地取出数据,同样vector提供了erase(),pop_back(),clear()来删除数据,当删除数据时,应该知道要删除尾部的数据,或者是删除所有数据,还是个别的数据。

Remove_if()算法 如果要使用remove_if(),需要在头文件中包含如下代码::

#include <algorithm>

Remove_if()有三个参数:

1、 iterator _First:指向第一个数据的迭代指针。

2、 iterator _Last:指向最后一个数据的迭代指针。

3、 predicate _Pred:一个可以对迭代 *** 作的条件函数。

条件函数

条件函数是一个按照用户定义的条件返回是或否的结果,是最基本的函数指针,或是一个函数对象。这个函数对象需要支持所有的函数调用 *** 作,重载operator()() *** 作。remove_if()是通过unary_function继承下来的,允许传递数据作为条件。

例如,假如想从一个vector<CString>中删除匹配的数据,如果字串中包含了一个值,从这个值开始,从这个值结束。首先应该建立一个数据结构来包含这些数据,类似代码如下:

#include <functional>

enum findmodes {

FM_INVALID = 0,

FM_IS,

FM_STARTSWITH,

FM_ENDSWITH,

FM_CONTAINS

}

typedef struct tagFindStr {

UINT iMode

CString szMatchStr

} FindStr

typedef FindStr* LPFINDSTR

然后处理条件判断:

class FindMatchingString : public std::unary_function<CString, bool>{

public:

FindMatchingString(const LPFINDSTR lpFS) :

m_lpFS(lpFS) {

}

bool operator()(CString&szStringToCompare) const {

bool retVal = false

switch (m_lpFS->iMode) {

case FM_IS: {

retVal = (szStringToCompare == m_lpFDD->szMatchStr)

break

}

case FM_STARTSWITH: {

retVal = (szStringToCompare.Left(m_lpFDD->szMatchStr.GetLength())

== m_lpFDD->szWindowTitle)

break

}

case FM_ENDSWITH: {

retVal = (szStringToCompare.Right(m_lpFDD->szMatchStr.GetLength())

== m_lpFDD->szMatchStr)

break

}

case FM_CONTAINS: {

retVal = (szStringToCompare.Find(m_lpFDD->szMatchStr) != -1)

break

}

}

return retVal

}

private:

LPFINDSTR m_lpFS

}

通过这个 *** 作你可以从vector中有效地删除数据:

FindStr fs

fs.iMode = FM_CONTAINS

fs.szMatchStr = szRemove

vs.erase(std::remove_if(vs.begin(), vs.end(), FindMatchingString(&fs)), vs.end())

Remove(),remove_if()等所有的移出 *** 作都是建立在一个迭代范围上的,不能 *** 作容器中的数据。所以在使用remove_if(),实际上 *** 作的时容器里数据的上面的。

看到remove_if()实际上是根据条件对迭代地址进行了修改,在数据的后面存在一些残余的数据,那些需要删除的数据。剩下的数据的位置可能不是原来的数据,但他们是不知道的。

调用erase()来删除那些残余的数据。注意上面例子中通过erase()删除remove_if()的结果和vs.enc()范围的数据。

定义结构

然而在前一种情况,容器承受了过多的功能,它不仅要负责自己“容器”内的元素维护(添加、删除等等),而且还要提供遍历自身的接口;而且由于遍历状态保存的问题,不能对同一个容器对象同时进行多个遍历。第二种方式倒是省事,却又将容器的内部细节暴露无遗。

而迭代器模式的出现,很好的解决了上面两种情况的弊端。先来看下迭代器模式的真面目吧。

迭代器模式由以下角色组成:

1) 迭代器角色(Iterator):迭代器角色负责定义访问和遍历元素的接口。

2) 具体迭代器角色(Concrete Iterator):具体迭代器角色要实现迭代器接口,并要记录遍历中的当前位置。

3) 容器角色(Container):容器角色负责提供创建具体迭代器角色的接口。

4) 具体容器角色(Concrete Container):具体容器角色实现创建具体迭代器角色的接口——这个具体迭代器角色与该容器的结构相关。

迭代器模式的类图如下:

从结构上可以看出,迭代器模式在客户与容器之间加入了迭代器角色。迭代器角色的加入,就可以很好的避免容器内部细节的暴露,而且也使得设计符合“单一职责原则”。

注意,在迭代器模式中,具体迭代器角色和具体容器角色是耦合在一起的——遍历算法是与容器的内部细节紧密相关的。为

了使客户程序从与具体迭代器角色耦合的困境中脱离出来,避免具体迭代器角色的更换给客户程序带来的修改,迭代器模式抽象了具体迭代器角色,使得客户程序更

具一般性和重用性。这被称为多态迭代。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/11612164.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-17
下一篇 2023-05-17

发表评论

登录后才能评论

评论列表(0条)

保存