buildroot工具链是什么意思

buildroot工具链是什么意思,第1张

GNU Compiler Collection(gcc)GNU libc (glibc)以及用来编译、测试和分析软件的 GNU binutils (binutils)。 他是自依赖的, 也就是说 他构成了一个编译,测试,安装的完整体,使用这个工具链可以很容易从0开始创建一个GNU/Linux系统。

一、准备工作

a) 首先,你要有一台PC(这不废话么^_^),装好了Linux。

b) 安装好GCC(这个指的是host gcc,用于编译生成运行于pc机程序的)、make、ncurses等工具。

c) 下载一份纯净的Linux内核源码包,并解压好。

注意,如果你是为当前PC机编译内核,最好使用相应的Linux发行版的源码包。

不过这应该也不是必须的,因为我在我的Fedora 13上(其自带的内核版本是2.6.33.3),就下载了一个标准的内核linux-2.6.32.65.tar.xz,并且顺利的编译安装成功了,上电重启都OK的。不过,我使用的.config配置文件,是Fedora 13自带内核的配置文件,即/lib/modules/`uname -r`/build/.config

d) 如果你是移植Linux到嵌入式系统,则还要再下载安装交叉编译工具链。

例如,你的目标单板CPU可能是arm或mips等cpu,则安装相应的交叉编译工具链。安装后,需要将工具链路径添加到PATH环境变量中。例如,你安装的是arm工具链,那么你在shell中执行类似如下的命令,假如有类似的输出,就说明安装好了。

[root@localhost linux-2.6.33.i686]# arm-linux-gcc --version

arm-linux-gcc (Buildroot 2010.11) 4.3.5

Copyright (C) 2008 Free Software Foundation, Inc.

This is free softwaresee the source for copying conditions. There is NO

warrantynot even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

注:arm的工具链,可以从这里下载:回复“ARM”即可查看。

二、设置编译目标

在配置或编译内核之前,首先要确定目标CPU架构,以及编译时采用什么工具链。这是最最基础的信息,首先要确定的。

如果你是为当前使用的PC机编译内核,则无须设置。

否则的话,就要明确设置。

这里以arm为例,来说明。

有两种设置方法():

a) 修改Makefile

打开内核源码根目录下的Makefile,修改如下两个Makefile变量并保存。

ARCH := arm

CROSS_COMPILE := arm-linux-

注意,这里cross_compile的设置,是假定所用的交叉工具链的gcc程序名称为arm-linux-gcc。如果实际使用的gcc名称是some-thing-else-gcc,则这里照葫芦画瓢填some-thing-else-即可。总之,要省去名称中最后的gcc那3个字母。

b) 每次执行make命令时,都通过命令行参数传入这些信息。

这其实是通过make工具的命令行参数指定变量的值。

例如

配置内核时时,使用

make ARCH=arm CROSS_COMPILE=arm-linux- menuconfig

编译内核时使用

make ARCH=arm CROSS_COMPILE=arm-linux-

注意,实际上,对于编译PC机内核的情况,虽然用户没有明确设置,但并不是这两项没有配置。因为如果用户没有设置这两项,内核源码顶层Makefile(位于源码根目录下)会通过如下方式生成这两个变量的值。

SUBARCH := $(shell uname -m | sed -e s/i.86/i386/ -e s/sun4u/sparc64/ \

-e s/arm.*/arm/ -e s/sa110/arm/ \

-e s/s390x/s390/ -e s/parisc64/parisc/ \

-e s/ppc.*/powerpc/ -e s/mips.*/mips/ \

-e s/sh[234].*/sh/ )

ARCH?= $(SUBARCH)

CROSS_COMPILE ?=

经过上面的代码,ARCH变成了PC编译机的arch,即SUBARCH。因此,如果PC机上uname -m输出的是ix86,则ARCH的值就成了i386。

而CROSS_COMPILE的值,如果没配置,则为空字符串。这样一来所使用的工具链程序的名称,就不再有类似arm-linux-这样的前缀,就相当于使用了PC机上的gcc。

最后再多说两句,ARCH的值还需要再进一步做泛化。因为内核源码的arch目录下,不存在i386这个目录,也没有sparc64这样的目录。

因此顶层makefile中又构造了一个SRCARCH变量,通过如下代码,生成他的值。这样一来,SRCARCH变量,才最终匹配到内核源码arch目录中的某一个架构名。

SRCARCH := $(ARCH)

ifeq ($(ARCH),i386)

SRCARCH := x86

endif

ifeq ($(ARCH),x86_64)

SRCARCH := x86

endif

ifeq ($(ARCH),sparc64)

SRCARCH := sparc

endif

ifeq ($(ARCH),sh64)

SRCARCH := sh

endif

三、配置内核

内核的功能那么多,我们需要哪些部分,每个部分编译成什么形式(编进内核还是编成模块),每个部分的工作参数如何,这些都是可以配置的。因此,在开始编译之前,我们需要构建出一份配置清单,放到内核源码根目录下,命名为.config文件,然后根据此.config文件,编译出我们需要的内核。

但是,内核的配置项太多了,一个一个配,太麻烦了。而且,不同的CPU架构,所能配置的配置项集合,是不一样的。例如,某种CPU的某个功能特性要不要支持的配置项,就是与CPU架构有关的配置项。所以,内核提供了一种简单的配置方法。

以arm为例,具体做法如下。

a) 根据我们的目标CPU架构,从内核源码arch/arm/configs目录下,找一个与目标系统最接近的配置文件(例如s3c2410_defconfig),拷贝到内核源码根目录下,命名为.config。

注意,如果你是为当前PC机编译内核,最好拷贝如下文件到内核源码根目录下,做为初始配置文件。这个文件,是PC机当前运行的内核编译时使用的配置文件。

/lib/modules/`uname -r`/build/.config

这里顺便多说两句,PC机内核的配置文件,选择的功能真是多。不编不知道,一编才知道。Linux发行方这样做的目的,可能是想让所发行的Linux能够满足用户的各种需求吧。

b) 执行make menuconfig对此配置做一些需要的修改,退出时选择保存,就将新的配置更新到.config文件中了。

简介

交叉编译工具链是一个由编译器、连接器和解释器组成的综合开发环境,交叉编译工具链主要由binutils、gcc和glibc 3个部分组成。有时出于减小 libc 库大小的考虑,也可以用别的 c 库来代替 glibc,例如 uClibc、dietlibc 和 newlib。交叉编译工具链主要包括针对目标系统的编译器 gcc、目标系统的二进制工具binutils、目标系统的标准c库glibc和目标系统的 Linux内核头文件。第一个步骤就是确定目标平台。每个目标平台都有一个明确的格式,这些信息用于在构建过程中识别要使用的不同工具的正确版本。因此,当在一个特定目标机下运行GCC时,GCC便在目录路径中查找包含该目标规范的应用程序路径。GNU的目标规范格式为CPU-PLATFORM-OS。例如,建立基于ARM平台的交叉工具链,目标平台名为arm-linux-gnu。

交叉编译工具链的制作方法

分步编译和安装交叉编译工具链所需要的库和源代码,最终生成交叉编译工具链。

通过Crosstool脚本工具来实现一次编译生成交叉编译工具链。

直接通过网上(ftp.arm.kernel.org.uk)下载已经制作好的交叉编译工具链。

方法1相对比较困难,适合想深入学习构建交叉工具链的读者。如果只是想使用交叉工具链,建议使用方法2或方法3构建交叉工具链。方法3的优点不用多说,当然是简单省事,但与此同时该方法有一定的弊端就是局限性太大,因为毕竟是别人构建好的,也就是固定的没有灵活性,所以构建所用的库以及编译器的版本也许并不适合你要编译的程序,同时也许会在使用时出现许多莫名的错误,建议你慎用此方法。

方法1:分步构建交叉编译工具链

下载所需的源代码包

建立工作目录

建立环境变量

编译、安装Binutils

获取内核头文件 

编译gcc的辅助编译器

编译生成glibc库

编译生成完整的gcc

由于在问答中的篇幅,我不能细述具体的步骤,兴趣的同学请自行阅读开源共创协议的《Linux from scratch》,网址是:linuxfromscratch dot org

方法2:用Crosstool工具构建交叉工具链(推荐)

Crosstool是一组脚本工具集,可构建和测试不同版本的gcc和glibc,用于那些支持glibc的体系结构。它也是一个开源项目,下载地址是kegel dot com/crosstool。用Crosstool构建交叉工具链要比上述的分步编译容易得多,并且也方便许多,对于仅仅为了工作需要构建交叉编译工具链的你,建议使用此方法。

运行which makeinfo,如果不能找见该命令,在解压texinfo-4.11.tar.bz2,进入texinfo-4.11目录,执行./configure&&make&&make install完成makeinfo工具的安装

准备文件:

下载所需资源文件 linux-2.4.20.tar.gz、binutils-2.19.tar.bz2、gcc-3.3.6.tar.gz、glibc- 2.3.2.tar.gz、glibc-linuxthreads-2.3.2.tar.gz和gdb-6.5.tar.bz2 。然后将这些工具包文件放在新建的$HOME/downloads目录下,最后在$HOME/目录下解压crosstool-0.43.tar.gz,命

令如下:

# cd $HOME/

# tar –xvzf crosstool-0.43.tar.gz

建立脚本文件

接着需要建立自己的编译脚本,起名为arm.sh,为了简化编写arm.sh,寻找一个最接近的脚本文件demo-arm.sh作为模板,然后将该脚本的内容复制到arm.sh,修改arm.sh脚本,具体 *** 作如下:

# cd crosstool-0.43

# cp demo-arm.sh arm.sh

# vi arm.sh

修改后的arm.sh脚本内容如下:

#!/bin/sh

set -ex

TARBALLS_DIR=$HOME/downloads # 定义工具链源码所存放位置。

RESULT_TOP=$HOME/arm-bin          # 定义工具链的安装目录

export TARBALLS_DIR RESULT_TOP

GCC_LANGUAGES="c,c++"                # 定义支持C, C++语言

export GCC_LANGUAGES

# 创建/opt/crosstool目录

mkdir -p $RESULT_TOP

# 编译工具链,该过程需要数小时完成。

eval 'cat arm.dat gcc-3.3.6-glibc-2.3.2.dat' sh all.sh --notest

echo Done. 建立配置文件

在arm.sh脚本文件中需要注意arm-xscale.dat和gcc-3.3.6-glibc-2.3.2.dat两个文件,这两个文件是作为Crosstool的编译的配置文件。其中 arm.dat文件内容如下,主要用于定义配置文件、定义生成编译工具链的名称以及定义编译选项等。

KERNELCONFIG='pwd'/arm.config # 内核的配置

TARGET=arm-linux # 编译生成的工具链名称

TARGET_CFLAGS="-O"                # 编译选项

gcc-3.3.6-glibc-2.3.2.dat文件内容如下,该文件主要定义编译过程中所需要的库以及它定义的版本,如果在编译过程中发现有些库不存在时,Crosstool会自动在相关网站上下载,该工具在这点上相对比较智能,也非常有用。

BINUTILS_DIR=binutils-2.19

GCC_DIR=gcc-3.3.6

GLIBC_DIR=glibc-2.3.2

LINUX_DIR=linux-2.6.10-8(根据实际情况填写)

GDB_DIR=gdb-6.5

执行脚本

将Crosstool的脚本文件和配置文件准备好之后,开始执行arm.sh脚本来编译交叉编译工具。具体执行命令如下:

# cd crosstool-0.43

# ./arm.sh

经过数小时的漫长编译之后,会在/opt/crosstool目录下生成新的交叉编译工具,其中包括以下内容:

arm-linux-addr2line arm-linux-g++        arm-linux-ld         arm-linux-size

arm-linux-ar       arm-linux-gcc      arm-linux-nm         arm-linux-strings

arm-linux-as       arm-linux-gcc-3.3.6 arm-linux-objcopy arm-linux-strip

arm-linux-c++      arm-linux-gccbug arm-linux-objdump fix-embedded-paths

arm-linux-c++filt arm-linux-gcov     arm-linux-ranlib

arm-linux-cpp      arm-linux-gprof    arm-linux-readelf 添加环境变量

然后将生成的编译工具链路径添加到环境变量PATH上去,添加的方法是在系统/etc/ bashrc文件的最后添加下面一行,在bashrc文件中添加环境变量

export PATH=/home/jiabing/gcc-3.3.6-glibc-2.3.2/arm-linux-bin/bin:$PATH

至此,arm-linux下的交叉编译工具链已经完成,现在就可以使用arm-linux-gcc来生成试验箱上的程序了!


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/11702296.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-18
下一篇 2023-05-18

发表评论

登录后才能评论

评论列表(0条)

保存