拆项公式

拆项公式,第1张

拆项公式 拆项公式是什么?

(1)1/n(n+1)=1/n-1/(n+1)(2)1/(2n-1)(2n+1)=1/2[1/(2n-1)-1/(2n+1)](3)1/n(n+1)(n+2)=1/2[1/n(n+1)-1/(n+1)(n+2)]1拆项法因式分解多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.例:分解因式:x^3-9x+8.分析:本题解法很多,这里只介绍运用拆项、添项法分解的几种解法,注意一下拆项、添项的目的与技巧.解法1 将常数项8拆成-1+9.原式=x^3-9x-1+9=(x^3-1)-9x+9=(x-1)(x^2+x+1)-9(x-1)=(x-1)(x^2+x-8)解法2 将一次项-9x拆成-x-8x.原式=x^3-x-8x+8=(x^3-x)+(-8x+8)=x(x+1)(x-1)-8(x-1)=(x-1)(x^2+x-8)解法3 将三次项x^3拆成9x^3-8x^3.原式=9x^3-8x^3-9x+8=(9x3-9x)+(-8x3+8)=9x(x+1)(x-1)-8(x-1)(x^2+x+1)=(x-1)(x^2+x-8)解法4 添加两项-x^2+x^2.原式=x^3-9x+8=x^3-x^2+x^2-9x+8=x^2(x-1)+(x-8)(x-1)=(x-1)(x^2+x-8)2说明由此题可以看出,用拆项、添项的方法分解因式时,要拆哪些项,添什么项并无一定之规,主要的是要依靠对题目特点的观察,灵活变换,因此拆项、添项法是因式分解诸方法中技巧性最好的一种.

1/ab拆项公式

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/3642315.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-10-13
下一篇 2022-10-13

发表评论

登录后才能评论

评论列表(0条)

保存