奇函数加偶函数是非奇非偶函数。
已知f(x)为奇函数,g(x)为偶函数,且两者的定义域相同,判断f(x)+g(x)的奇偶性。
解:由题意知f(x)=–f(–x),g(x)=g(–x),令h(x)=f(x)+g(x),则h(x)的定义域关于原点对称。
h(–x)=f(–x)+g(–x),而h(x)不等于h(–x),–h(–x)=–f(–x)–g(–x),即h(x)不等于–h(–x),因此h(x)为非奇非偶函数。
举例说明:f(x)=x,g(x)=x的平方,h(x)=x+x的平方,h(–x)=–x+x的平方,可以看出h(x)为非奇非偶函数。
扩展资料:对于函数定义域内的任意一个x,若f(-x)=-f(x)(奇函数)和f(-x)=f(x)(偶函数)都不能成立,那么函数f(x)既不是奇函数又不是偶函数,称为非奇非偶函数。
两个奇函数相加所得的和或相减所得的差为奇函数;一个偶函数与一个奇函数相加所得的和或相减所得的差为非奇非偶函数。
两个奇函数相乘所得的积或相除所得的商为偶函数;一个偶函数与一个奇函数相乘所得的积或相除所得的商为奇函数。
请问奇函数加偶函数是什么函数?欢迎分享,转载请注明来源:内存溢出
评论列表(0条)