欧拉变换

欧拉变换,第1张

欧拉变换 三角函数的欧拉变换是如何推导出来的?如图,数学分析的不定积分的欧拉变换,将根号那个等于根号a±t .是把平方项消去,为什么第二个令

欧拉变换的第二种形式是通过1)消去c。

2)约掉一个x。

来实现消去平方项的已赞过已踩过已赞过已踩过已赞过已踩过<你对这个回答的评价是?评论收起 ._4m59a3r{padding:30px 0 20px 42px;border:0;background-color:#fff;position:relative;zoom:1;margin-bottom:10px}._4m59a3r.ec-1841{padding:20px 0}._4m59a3r.ec-2246{padding:20px 0 10px}.ec-1841 ._44pkrw8{font-size:16px;margin-bottom:-5px}._44pkrw8{position:relative;overflow:hidden;line-height:25px;height:25px;color:#7a8f9a}._44pkrw8 h2{margin:0;padding:0}._44pkrw8:after{content:" ";display:block;height:0;clear:both;visibility:hidden}a._53wjrpp{float:right;color:#666;text-decoration:none;font-size:12px;margin-left:8px}._3sjgky6{font-size:13px;line-height:normal;color:#666;line-height:20px;margin-top:10px}._5qv9qjj{position:relative;margin-top:15px}._5qv9qjj h3{padding:0;font-weight:400}._5qv9qjj a{text-decoration:none}._5qv9qjj em{color:#d81419;font-style:normal}.ec-2246 ._5qv9qjj{margin-top:20px}._2md3yaj{margin-top:10px}._8tzhv8k{margin-top:24px}._2n9tg5c{display:block;width:auto;overflow:hidden}._2pgsygz,._3e8y5sz,._3qq8arb,._3snc425,._4r71dp9,._6hxazj8,._7n8mzey,._7wu6jbr,._25ypd8e,._58qg8g6,._78q33t7{position:relative;min-height:1px;float:left;box-sizing:border-box}._6hxazj8{width:8.33333333%}._78q33t7{width:16.6666666%}._4r71dp9{width:25%}._25ypd8e{width:33.33333333%}._58qg8g6{width:50%}._3snc425{width:58.3333333%}._7wu6jbr{width:66.66666667%}._3qq8arb{width:75%}._3e8y5sz{width:83.3333333%}._7n8mzey{width:91.66666667%}._2pgsygz{width:100%}._4xt2t91{float:right}body a._8r3sgmj,body div._8r3sgmj{font-family:Arial,Helvetica,sans-serif;text-decoration:none;color:#333;font-size:14px!important;line-height:19px;margin-bottom:10px;display:block}a._8r3sgmj:hover{color:#34b458;text-decoration:underline}a._8r3sgmj font{color:#34b458}a._8r3sgmj div{word-break:break-all}._2vp72m4{white-space:nowrap;text-overflow:ellipsis;overflow:hidden}._37n8ad5{-webkit-line-clamp:2}._5waejsg,._37n8ad5{display:-webkit-box;word-break:break-all;word-wrap:break-word;-webkit-box-orient:vertical;overflow:hidden}._5waejsg{-webkit-line-clamp:3}._2htasef{display:-webkit-box;-webkit-line-clamp:4;word-break:break-all;word-wrap:break-word;-webkit-box-orient:vertical;overflow:hidden}body .ds4ghcq{font-family:Arial,Helvetica,sans-serif;font-size:12px;line-height:22px;transform:translateY(.4666666667em);padding-top:0;color:#7a8f9a;position:relative}body .ds4ghcq:before{content:"";margin-top:-10px;display:block;height:0}body .ds4ghcq a{color:#7a8f9a;display:block}body .ds4ghcq a ._36v43n5{color:#666}body .ds4ghcq button{float:right;color:#38f;font-size:12px;background:#fff;border:1px solid;padding:7px 13px;border-radius:3px;line-height:12px;position:absolute;right:0;bottom:0}body .ds4ghcq ._2n4a8n5{margin-left:5px}body .ds4ghcq ._5pyvpnv{display:inline-block;width:22px;height:22px;line-height:0;vertical-align:middle;margin-right:7px;margin-top:-2px;border:1px solid #eee;border-radius:50%}._86c1h4n{position:absolute;right:0}.ds4ghcq .ec-showurl-line:hover{text-decoration:underline}.ds4ghcq .ec-showurl-line{color:#9eacb6}body .tqf6eu9{font-size:12px;line-height:22px;transform:translateY(.4166666667em);padding-top:0}body .tqf6eu9:before{content:"";margin-top:-10px;display:block;height:0}body .tqf6eu9 a,body .tqf6eu9 div{color:#333}body .tqf6eu9 ._5cts8sp{font-size:15px;color:#999;line-height:25px}body .tqf6eu9 ._7rt4vyd{margin-right:5px}.tqf6eu9 font{color:#34b458}.ec-2246 .tqf6eu9 font{color:#c60a00}.ec-2246 .tqf6eu9{font-size:16px}.ec-2246 ._2cp3m46{position:relative}.ec-2246 ._2cp3m46:after{position:absolute;bottom:0;right:0;display:inline-block;padding-left:10px;padding-right:0;content:"70B951FB67E5770B8BE660C5";color:#34b458;background-color:#fff}.ec-2246 ._2cp3m46:before{position:absolute;bottom:0;right:90px;width:47px;height:29px;content:"";background-image:linear-gradient(270deg,#fff,hsla(0,0%,100%,0))}._4gepg6u{padding-bottom:100%}._3624yur{padding-bottom:133.33333333%}._2h49h5v{padding-bottom:33.3333333333%}._34vx49v{padding-bottom:56.25%}._7saw6sf{padding-bottom:50%}.wxehum5{padding-bottom:75%}._4vjecf9{padding-bottom:66.66666667%}._3dnq9wj{padding-bottom:40%}._565jrvr{background-position:50%;background-size:cover;background-repeat:no-repeat}._2h49h5v,._3dnq9wj,._4gepg6u,._4vjecf9,._7saw6sf,._34vx49v,._3624yur,.wxehum5{height:0;overflow:hidden}._2h49h5v img,._3dnq9wj img,._4gepg6u img,._4vjecf9 img,._7saw6sf img,._34vx49v img,._3624yur img,.wxehum5 img{width:100%}._6kyuv5a{border-radius:9px}._61hptpg{border-top-left-radius:0}._5729wdf{border-top-right-radius:0}._28ywksm{border-bottom-right-radius:0}._4znkr63{border-bottom-left-radius:0}._66yhbny{font-size:14px;color:#333;line-height:24px;margin-top:2px}._5fdnu4y{color:#f60;font-size:14px;line-height:22px;vertical-align:middle;margin:5px 0}._2hnej9y{position:relative}._43apezs{position:absolute;left:0;top:0;width:100%;height:100%;background:radial-gradient(transparent 50%,rgba(0,0,0,.05) 100%);transform:translateZ(0)}._6kyuv5a ._43apezs{border-radius:9px}._61hptpg ._43apezs{border-top-left-radius:0}._5729wdf ._43apezs{border-top-right-radius:0}._28ywksm ._43apezs{border-bottom-right-radius:0}._4znkr63 ._43apezs{border-bottom-left-radius:0}._2hnej9y._4gepg6u{padding-bottom:0;height:92px}.ec-2246 ._2hnej9y._4vjecf9{height:160px;width:240px;padding:0;margin:auto}body ._29wz5ed{overflow:hidden;font-size:0;display:flex}body ._5cd6n94{min-width:35px;max-width:35px;margin-right:8px;vertical-align:top}body ._2nu45h5{width:100%;height:100%;background:url(//nv00.cdn.bcebos.com/nv01/static/ecom/img/pc/head-img-535c333798.png) no-repeat 50%;background-size:100% 100%}body ._2uvtfb6{height:35px;min-width:0}body .s1gjn5b{font-size:16px;color:#000;line-height:1;margin-bottom:8px;white-space:nowrap;text-overflow:ellipsis;overflow:hidden}body ._8vzghvm{color:#999;font-size:12px;line-height:1}body ._29wz5ed ._2msvcy6 img{width:100%}body ._29wz5ed ._4qfz8fz{margin-right:15px}body ._5cd6n94{min-width:40px;max-width:40px;border-radius:50%;overflow:hidden}body .s1gjn5b{margin-bottom:0;font-size:14px;color:#333;line-height:20px;font-weight:700}body ._8vzghvm{margin-top:3px;color:#9eacb6;line-height:17px} 淘宝热卖广告2021-12-16购物上淘宝,诚信商家,高人气热卖商品,淘你满意!支付无忧,交易更放心!simba.taobao.com__与非2015-03-11·TA获得超过1.2万个赞知道大有可为答主回答量:3058采纳率:79%帮助的人:465万我也去答题访问个人页关注展开全部上下没什么区别,a,t,c 都只是参数,用哪个只是运算方便 本质没区别

欧拉公式怎么将三角函数变为指数高斯积分和欧拉变换。

高斯公式又叫高斯定理、或散度定理、高斯散度定理、高斯-奥斯特罗格拉德斯基公式、奥氏定理或高-奥公式: 矢量穿过任意闭合曲面的通量等于矢量的散度对闭合面所包围的体积的积分它给出了闭曲面积分和相应体积分的积分变换关系,是矢量分析中的重要恒等式。

是研究场的重要公式之一。

公式为:∮F·dS=∫▽·Fdv▽是哈密顿算符F、S为矢量

cos(wt)的欧拉变换

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/3953647.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-10-21
下一篇 2022-10-21

发表评论

登录后才能评论

评论列表(0条)

保存