解:f(x)=∫xln(1+x²)dx =(1/2)∫ln(1+x²)d(1+x²) =(1/2){(1+x²)ln(1+x²)-∫(1+x²)[(2x)/(1+x²)]dx} =(1/2)[(1+x²)ln(1+x²)-∫(2x)dx] =(1/2)[(1+x²)ln(1+x²)-x²]+C 代入点(0,-1/2),C=-1/2. ∴f(x)=(1/2)(1+x²)[ln(1+x²)-1]
2022年考研数学三大纲?欢迎分享,转载请注明来源:内存溢出
解:f(x)=∫xln(1+x²)dx =(1/2)∫ln(1+x²)d(1+x²) =(1/2){(1+x²)ln(1+x²)-∫(1+x²)[(2x)/(1+x²)]dx} =(1/2)[(1+x²)ln(1+x²)-∫(2x)dx] =(1/2)[(1+x²)ln(1+x²)-x²]+C 代入点(0,-1/2),C=-1/2. ∴f(x)=(1/2)(1+x²)[ln(1+x²)-1]
2022年考研数学三大纲?欢迎分享,转载请注明来源:内存溢出
评论列表(0条)