作为一名大数据领域的从业者,同时也在带大数据方向的研究生,所以我来回答一下这个问题。
首先,数据分析员的主要任务就是找出数据背后的规律,让数据呈现出价值,目前数据分析员是大数据落地应用的重要角色之一。
数据分析员(数据分析工程师)在不同行业所需要具备的知识结构是不同的,这主要是由于应用场景不同所导致的。
比如互联网领域对于数据分析师的要求就要高一些,一方面原因是互联网行业对于数据比较敏感,另一方面互联网行业的数据量比较大,同时数据类型也比较复杂,这些因素导致了在互联网行业从事数据分析具有较大的难度。
通常互联网行业的数据分析师需要具备三方面知识结构,其一是具备扎实的数学和统计学基础;其二是掌握数据分析的常见算法;其三是熟练掌握编程语言和数据库知识。
目前数据分析的基本方式有两种,一种是统计学方式,另一种是机器学习方式,机器学习的数据分析方式对于从业者的要求要高一些。
相对于互联网行业来说,传统行业对于数据分析岗位的要求往往更多集中在数据分析工具和行业知识上,对于大部分职场人来说,掌握一些常见的数据分析工具和数据库知识,基本上能够应对大部分数据分析场景,比如Excel和各种BI工具。
但是传统行业的数据分析任务往往与行业知识有紧密的联系,所以从业者要对行业知识有较为全面的认知过程。
如果想走数据分析师的路线,可以分为三个步骤来学习数据分析技术,第一步是学习基本的数据分析工具,比如Excel;第二步是学习数据库和编程语言,比如Python、R都是不错的选择;第三步是学习数据分析算法,比如决策树、朴素贝叶斯等。
最后,数据分析师要想提升自身的数据分析能力,一定要注重实践经验的积累,尤其是行业经验的积累。
我从事互联网行业多年,目前也在带计算机专业的研究生,主要的研究方向集中在大数据和人工智能领域,我会陆续写一些关于互联网技术方面的文章,感兴趣的朋友可以关注我,相信一定会有所收获。
如果有互联网、大数据、人工智能等方面的问题,或者是考研方面的问题,都可以在评论区留言!
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)