1、同底数幂相乘,底数不变,指数相加;(a^m)*(a^n)=a^(m+n)。
2、同底数幂相除,底数不变,指数相减;(a^m)÷(a^n)=a^(m-n)。
3、幂的乘方,底数不变,指数相乘;(a^m)^n=a^(mn)。
4、积的乘方,等于每一个因式分别乘方;(ab)^n=(a^n)(b^n)。
基本的函数的导数:1、y=a^x,y'=a^xlna。
2、y=c(c为常数),y'=0。
3、y=x^n,y'=nx^(n-1)。
4、y=e^x,y'=e^x。
5、y=logax(a为底数,x为真数),y'=1/x*lna。
6、y=lnx,y'=1/x。
7、y=sinx,y'=cosx。
8、y=cosx,y'=-sinx。
9、y=tanx,y'=1/cos^2x。
扩展资料:记忆口诀有理数的指数幂,运算法则要记住。
指数加减底不变,同底数幂相乘除。
指数相乘底不变,幂的乘方要清楚。
积商乘方原指数,换底乘方再乘除。
非零数的零次幂,常值为1不糊涂。
负整数的指数幂,指数转正求倒数。
看到分数指数幂,想到底数必非负。
乘方指数是分子,根指数要当分母。
参考资料来源:百度百科-指数运算法则
幂指数运算技巧欢迎分享,转载请注明来源:内存溢出
评论列表(0条)