凹凸区间是函数的二阶导数的正负,若在某区间为正则为凹区间,若在某区间为负则为凸区间。
一般地,把满足[f(x1)+f(x2)]/2>f[(x1+x2)/2]的区间称为函数f(x)的凹区间;反之为凸区间;凹凸性改变的点叫做拐点。通常凹凸性由二阶导数确定:满足f''(x)>0的区间为f(x)的凹区间,反之为凸区间。
曲线的凹凸分界点称为拐点,又称反曲点,在数学上指改变曲线向上或向下方向的点,直观地说拐点是使切线穿越。若该曲线图形的函数在拐点有二阶导数,则二阶导数在拐点处异号由正变负,由负变正或不存在。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)