什么是最小距离分类?

什么是最小距离分类?,第1张

什么是最小距离分类?

[拼音]:zuixiao juli fenlei

[外文]:minimum distance classification

按照模式与各类代表样本的距离进行模式分类的一种统计识别方法。在这种方法中,被识别模式与所属模式类别样本的距离最小。假定c 个类别代表模式的特征向量R1,…,Rc表示,x是被识别模式的特征向量,|x-Ri|是xRi(i=1,2,…,c)之间的距离,如果|x-Ri|最小,则把x分为第i类。在更复杂的情况下可以用各类的代表样本集合,而不仅仅是用一个样本作为最小距离分类的基础(见近邻法分类)。进行最小距离分类首先要为每个类别确定它的代表模式的特征向量,这是用这种方法进行分类效果好坏的关键。各类代表特征向量可以根据所研究对象的物理、化学、生物等方面的机理来确定,常用的方法是收集各类样本,用各类样本特征向量的平均向量作为各类代表模式的特征向量。其次要选择一种确定的距离度量以计算被识别模式与各类代表模式特征向量之间的距离。常用的距离有欧几里得距离、绝对值距离等。

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/4625070.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-11-05
下一篇 2022-11-05

发表评论

登录后才能评论

评论列表(0条)

保存