反比例函数的图像属于以原点为对称中心的中心对称的两条曲线,反比例函数图象中每一象限的每一条曲线会无限接近X轴Y轴但不会与坐标轴相交(y≠0)。
反比例函数性质:
1、单调性
当k>0时,图象分别位于第一、三象限,每一个象限内,从左往右,y随x的增大而减小;
当k<0时,图象分别位于第二、四象限,每一个象限内,从左往右,y随x的增大而增大。
k>0时,函数在x<0上为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。
2、相交性
因为在(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交,只能无限接近x轴,y轴。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)