sinarccosx等于√(1-x²)。
解答过程:
设arc coa x=y
则因为0≤y≤1
所以,sin y在0到1之间
sin y=√(1-cos ²y)=√(1-x²)
六边形任意相邻的三个顶点代表的三角函数,处于中间位置的函数值等于与它相邻两个函数值的乘积,如:sinθ=cosθ·tanθ;tanθ=sinθ·secθ。
反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其正弦、余弦、正切、余切 ,正割,余割为x的角。
三角函数的反函数是个多值函数,因为它并不满足一个自变量对应一个函数值的要求,其图像与其原函数关于函数 y=x 对称。欧拉提出反三角函数的概念,并且首先使用了“arc+函数名”的形式表示反三角函数。
反三角函数公式:
1、arcsin(-x)=-arcsinx
2、arccos(-x)=π-arccosx
3、arctan(-x)=-arctanx
4、arccot(-x)=π-arccotx
5、arcsinx+arccosx=π/2=arctanx+arccotx
6、sin(arcsinx)=x=cos(arccosx)=tan(arctanx)=cot(arccotx)
7、当x∈〔—π/2,π/2〕时,有arcsin(sinx)=x
8、当x∈〔0,π〕,arccos(cosx)=x
9、x∈(—π/2,π/2),arctan(tanx)=x
10、x∈(0,π),arccot(cotx)=x
11、x〉0,arctanx=arctan1/x,
12、若(arctanx+arctany)∈(—π/2,π/2),rctanx+arctany=arctan(x+y/1-xy)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)