裂项公式

裂项公式,第1张

裂项公式

1/[n(n+1)]=(1/n)-[1/(n+1)]。裂项相消公式有n·n!=(n+1)!-n!;1/[n(n+1)]=(1/n)- [1/(n+1)]等。

裂项法求和公式

(1)1/[n(n+1)]=(1/n)- [1/(n+1)]

(2)1/[(2n-1)(2n+1)]=1/2[1/(2n-1)-1/(2n+1)]

(3)1/[n(n+1)(n+2)]=1/2{1/[n(n+1)]-1/[(n+1)(n+2)]}

(4)1/(√a+√b)=[1/(a-b)](√a-√b)

(5)n·n!=(n+1)!-n!

(6)1/[n(n+k)]=1/k[1/n-1/(n+k)]

(7)1/[√n+√(n+1)]=√(n+1)-√n

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/bake/5384399.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-12-10
下一篇 2022-12-10

发表评论

登录后才能评论

评论列表(0条)

保存