y=cosx的最小正周期是2π ,y=Asin(ωx+ψ)或y=Acos(ωx+ψ)的最小正周期用公式计算:T=2π/ω。y=Atan(ωx+ψ)或y=cot(ωx+ψ)的最小正周期用公式计算:T=π/ω。
对于正弦函数y=sinx, 自变量x只要并且至少增加到x+2π时,函数值才能重复取得正弦函数和余弦函数的最小正周期是2π。y=Asin(ωx+φ), T=2π/ω(其中ω必须u003e0)。
扩展资料:
这类题目是通过三角函数的恒等变形,转化为一个角的一种函数的形式,用公式去求,其中正余弦函数求最小正周期的公式为T=2π/|ω| ,正余切函数T=π/|ω|。
函数f(x)=Asin(ωx+φ)和f(x)=Acos(ωx+φ)(A≠0,ωu003e0)的最小正周期都是;函数f(x)=Atan(ωx+φ)和f(x)=Acot(ωx+φ)(A≠0,ωu003e0)的最小正周期都是。
运用这一结论,可以直接求得形如y=Af(ωx+φ)(A≠0,ωu003e0)一类三角函数的最小正周期(这里“f”表示正弦、余弦、正切或余切函数)。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)