工商银行通过实施“1031”工程、信息化银行建设等工作,打造了同业领先的第四代核心银行系统,确立了信息 科技 领先优势。随着银行进入40时代,金融 科技 推动银行从生产资料、生产力和生产关系三方面打破传统、变更生产经营模式,顺势数字化、智能化、开放化的时代特征,银行不断丰富服务渠道、完善产品供给、提升服务体验和效率,同时对企业级架构建设和信息系统转型提出了新要求。
为应对内外部形势变化、满足业务创新转型发展要求,工商银行于2015年启动IT架构转型工作。充分利用分布式、云计算等新技术,基于开放平台与主机有机结合的基础架构,构建面向未来业务发展,以开放性、高容量、易扩展、成本可控、安全稳定、便捷研发为特征的全新技术体系。在技术变革的外部驱动和转型发展的内生需求互相作用下,工商银行于2017年启动智慧银行生态系统(ECOS)工程,围绕“客户服务智慧普惠、金融生态开放互联、业务运营共享联动、创新研发高效灵活、业务 科技 融合共建”的智慧银行建设目标,通过整合构建企业级业务架构,强化产品创新顶层设计与跨产品线整合,将业务架构由内部企业级延展至跨界生态,在业务架构指导下,进一步深化IT架构转型,持续优化应用架构、数据架构、技术架构、安全架构,建立金融与 科技 高度融合的全新生态体系。
1构建服务化、松耦合应用架构。 同步ECOS工程建设,工商银行引入了业界领先的持续价值提升方法论,通过分析全行发展战略、业务发展前瞻性规划和业务现状问题,体系化地开展业务领域顶层设计,从流程、产品、实体等三个维度开展业务建模,整合构建覆盖63个业务领域、100多个业务组件、近4000个任务组件的企业级业务架构,并指导推动IT系统建设。通过从业务领域、业务组件、业务对象到IT应用、IT服务、数据对象的对接落地,围绕业务对象,以数据为中心聚合服务,形成了覆盖业务产品服务、业务和数据基础服务、技术基础服务的企业级服务体系,打造了分层解耦的应用架构。建立组件化研发机制,实现业务模型的高效传导,促进统一架构语境下从业务到IT的一致性承接。在支付结算、xyk等热点领域完成组件化落地, 提炼 了19000余个IT服务,日交易量逾40亿笔,提升了产品研发的市场响应速度。
2打造主机+开放平台双核心系统。 依托自主可控、体系完备的开放平台技术,逐步从传统的以主机为核心的应用布局向主机+开放平台双核心布局转型,初步建成具备承接主机业务下移能力的开放平台核心银行系统。在国内大型银行中,率先实现银行核心业务的完整闭环处理,截至2020年上半年,已有超过90%的应用部署在开放平台。在中资银行中,率先使用自主研发的开放平台境外核心业务系统,已在欧洲、亚太区域新设机构实际投产运营。随着双核心建设不断深化,工商银行在业务量快速增长态势下,整体保持主机资源零增长,2015~2020年累计实现主机资源压降65000MIPS以上。
3形成双轮驱动的开放金融生态。 工商银行建设以“嵌入场景、输出金融”为特征的API开放平台,与以“绿色部署、敏捷上线”为特征的金融生态云,组合形成全行互联网金融场景建设“双轮驱动”的体系化品牌。目前已对外开放9大类1800多项API服务,为8800多家合作方提供服务,成为银行同业中“合作伙伴最多、服务最全面”的开放平台。已推出教育云、物业云等17款金融生态云产品,累计推广G/B端客户超过3万个,C端客户929万。
1打造多模式、高性能数据交换体系。 工商银行综合运用流数据处理、数据复制、文件共享等技术,打造了多模式、高性能的企业级数据交换平台,面向全行提供实时、准实时、分钟级、小时级等多种时效的企业级数据交换服务,并在余额变动实时提醒、实时交易反欺诈、准实时存贷款偏离度计算等应用场景取得良好成效。
2率先建成自主可控的大数据服务云。 同业率先完成传统封闭式架构(TD、Extradata)向开放分布式架构(Hadoop、MPPDB)转型,建成金融行业集群规模最大、技术生态最全、供给能力最强的大数据服务云体系,软硬件投入仅为原有产品投入的30%。全数据整合后容量超过93PB,为171个总行应用、22个业务部门和52家境内外分行及子公司提供了高效、便捷、丰富的高质量数据服务。
3着力打造企业级数据中台。 按照ECOS工程总体布局,以共享、复用、创新为目标,通过数据资产沉淀、数据服务化、数据资产运营、数据产品输出等措施,打造高效、智慧、开放、共享的标准化数据服务。面向全行1万余名数据分析师提供一站式、全链路线上BI分析能力,支撑全面风险管理、xyk风控、智慧大脑等重点场景建设,加快推进客服、运营、产品和风控等领域的智慧赋能,提升各专业数据应用创新能力。
1打造一系列企业级新技术应用平台。 工商银行依托金融 科技 研究院体系化布局新技术,建成了云计算、分布式、API平台、大数据、流数据、人工智能、物联网、区块链、生物识别、移动互联网十大技术平台,是工商银行技术领先优势的集中体现。人工智能机器学习平台集成业界主流机器学习算法,提供便捷高效、全流程建模、自学习的AI全栈平台,赋能数据智能化应用,构建工行智慧大脑。物联网金融服务平台通过智能感知万物,获取海量物联数据,扩展银行金融服务边界,创新金融服务模式,提供安全可靠的智慧物联解决方案。区块链技术平台在资金管理、供应链金融等七大业务领域构建服务实体经济的区块链应用生态,机构用户超千家,个人用户超100万,拥有近百项专利,荣获多项业界大奖。生物识别平台提供人脸、指纹等生物特征管理、安全管控、服务调度等功能,具备多生物特征统一管控、统一服务的能力。
2建成自主可控、体系完备的云计算、分布式技术体系。 云计算平台具有开放性、高容量、易扩展、智能运维等特点,从传统手工为主的虚拟化架构,转变为快速供给、稳定可靠、资源集约、运维智能的新型云计算体系架构。截至2020年8月,工商银行已实现60000+节点、34000+容器的入云规模,具备万级容器集群自动供给能力,同等业务量下服务器虚拟资源利用率平均提升2~3倍,业务高峰期系统扩容时间由几十分钟缩至秒级,2019年荣获人民银行 科技 发展奖一等奖。分布式技术平台涵盖9大类分布式技术组件,在快捷支付、纪念币预约等150余个应用广泛运用,为IT架构从单体集中式架构向分布式服务化架构转型提供了技术基础。截至2020年8月,日均交易量超过50亿笔,并发支撑能力超过10万笔/秒,重点交易平均响应时间小于10ms,有效应对“双十一”秒杀等高频、大并发交易对IT架构稳定性、业务连续性的冲击。
落实国家网络安全等级保护20要求,完善安全体系建设,加强新技术领域的安全防护,随云计算、大数据、人工智能、区块链、5G、物联网等金融 科技 发展同步规划、同步建设。研究完善以数据为中心的安全方法论和保护体系,加强个人信息和隐私的保护,“融e行”第一批完成在中国互联网金融协会的认证备案。围绕ECOS工程建设,建立多因子身份认证体系,发展手机盾、云证书、指纹、人脸、声纹、指静脉、虹膜等多种认证及生物识别技术。建设企业级反欺诈平台,通过终端、账户、行为等多维度展开智能风控,有效拦截欺诈交易,提升开放银行防御和风险处置能力。
在新一轮 科技 革命与我国转变发展方式的 历史 交汇期,工商银行将 科技 创新作为第一发展动力,积极创新和引入金融 科技 前沿技术,在全行战略、企业架构的指引下,强化IT与业务的融合。通过金融 科技 赋能经营转型,创新服务模式,拓展新生态,提高金融供给对实体经济的适配性和灵活性,为广大客户提供高价值服务,为建设具有全球竞争力的世界一流现代金融企业提供动能源泉。
大数据应用于各个行业,包括金融、汽车、餐饮、电信、能源、娱乐等在内的社会各行各业都已经融入了大数据的痕迹。
1、制造业:利用工业大数据提升制造业水平,包括产品故障诊断与预测、分析工艺流程、改进生产工艺,优化生产过程能耗、工业供应链分析与优化、生产计划与排程。
2、金融业:大数据在高频交易、社交情绪分析和信贷风险分析三大金融创新领域发挥重大作用。
3、汽车行业:利用大数据和物联网技术的无人驾驶汽车,在不远的未来将走入我们的日常生活。
4、互联网行业:借助于大数据技术分析用户行为,进行商品推荐和针对性广告投放。
5、餐饮行业:利用大数据实现餐饮O2O模式,彻底改变传统餐饮经营方式。
6、电信行业:利用大数据技术实现客户离网分析,及时掌握客户离网倾向,出台客户挽留措施。
7、能源行业:随着智能电网的发展,电力公司可以掌握海量的用户用电信息,利用大数据技术分析用户用电模式,可以改进电网运行,合理设计电力需求响应系统,确保电网运行安全。
8、物流行业:利用大数据优化物流网络,提高物流效率,降低物流成本。
9、城市管理:利用大数据实现智能交通、环保监测、城市规划和智能安防。
10、生物医学:大数据可以帮助我们实现流行病预测、智慧医疗、健康管理,同时还可以帮助我们解读DNA,了解更多的生命奥秘。
11、公共安全领域:政府利用大数据技术构建强大的国家安全保障体系,公共安全领域的大数据分析应用,反恐维稳与各类案件分析的信息化手段,借助大数据预防犯罪。
12、个人生活:大数据还可以应用于个人生活,利用与每个人相关联的“个人大数据”,分析个人生活行为轨迹,为其提供更加周到的个性化服务。
大数据的价值远不止于此,大数据对各行各业的渗透,是推动社会生产和生活的核心要素。
扩展资料
七个典型的大数据应用案例
1、梅西百货的实时定价机制。根据需求和库存的情况,该公司基于SAS的系统对多达7300万种货品进行实时调价。
2、Tipp24 AG针对欧洲博彩业构建的下注和预测平台。该公司用KXEN软件来分析数十亿计的交易以及客户的特性,然后通过预测模型对特定用户进行动态的营销活动。这项举措减少了90%的预测模型构建时间。SAP公司正在试图收购KXEN。
3、沃尔玛的搜索。这家零售业寡头为其网站Walmartcom自行设计了最新的搜索引擎Polaris,利用语义数据进行文本分析、机器学习和同义词挖掘等。根据沃尔玛的说法,语义搜索技术的运用使得在线购物的完成率提升了10%到15%。“对沃尔玛来说,这就意味着数十亿美元的金额。”Laney说。
4、快餐业的视频分析。该公司通过视频分析等候队列的长度,然后自动变化电子菜单显示的内容。如果队列较长,则显示可以快速供给的食物;如果队列较短,则显示那些利润较高但准备时间相对长的食品。
5、Morton牛排店的品牌认知。当一位顾客开玩笑地通过推特向这家位于芝加哥的牛排连锁店订餐送到纽约Newark机场(他将在一天工作之后抵达该处)时,Morton就开始了自己的社交秀。首先,分析推特数据,发现该顾客是本店的常客,也是推特的常用者。根据客户以往的订单,推测出其所乘的航班,然后派出一位身着燕尾服的侍者为客户提供晚餐。
6、PredPol Inc。PredPol公司通过与洛杉矶和圣克鲁斯的警方以及一群研究人员合作,基于地震预测算法的变体和犯罪数据来预测犯罪发生的几率,可以精确到500平方英尺的范围内。在洛杉矶运用该算法的地区,盗窃罪和暴力犯罪分布下降了33%和21%。
7、 Tesco PLC(特易购)和运营效率。这家超市连锁在其数据仓库中收集了700万部冰箱的数据。通过对这些数据的分析,进行更全面的监控并进行主动的维修以降低整体能耗。
大数据不是
抽样数据,而是全部的数据;
所以大数据必须依赖云计算,不可能是局域网的;
物联网目标是把所有的物体都连接到互联网,并把物体虚拟化,数据上传,自然就是大数据了。
云计算是为了大并发、大数据下的解决实际运算问题;
大数据是为了解决海量数据分析问题;
物联网是解决设备与软件的融合问题;
可见,它们之间的关系是互相关联、互相作用的:
物联网是很多大数据的来源(设备数据),而大量设备数据的采集、控制、服务要依托云计算,设备数据的分析要依赖于大数据,而大数据的采集、分析同样依托云计算,物联网反过来能为云计算提供issa层的设备和服务控制,大数据分析又能为云计算所产生的运营数据提供分析、决策依据。
数字货币与物联网没有关系,
相关介绍:
数字货币与物联网两者的运用领域不一样。
1物联网:
通过各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术。
2数字货币:
是电子货币形式的替代货币。数字金币和密码货币都属于数字货币(DIGICCY)。
扩展资料
物联网通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。物联网是一个基于互联网、传统电信网等的信息承载体,它让所有能够被独立寻址的普通物理对象形成互联互通的网络。
而数字货币可以认为是一种基于节点网络和数字加密算法的虚拟货币,主要应用快捷、经济和安全的支付结算,通过数字货币建立数字钱包,在金融覆盖不足和经济欠发达地区实现更低成本、更安全的小额支付和资金转移,实现中间业务收入增加。
参考资料来源:百度百科-物联网
参考资料来源:百度百科-数字货币
大数据英文简称BIG DATA,我们通常叫做巨量资料,“大数据”概念最早由维克托·迈尔·舍恩伯格和肯尼斯·库克耶在编写《大数据时代》中提出,指不用随机分析法(抽样调查)的捷径,而是采用所有数据进行分析处理。大数据有4V特点,即Volume(大量)、Velocity(高速)、Variety(多样)、Value(价值)。其实“大数据”早已运用于物理学、生物学、环境生态学等领域以及军事、金融、通讯等行业,只是因为近年来互联网和信息行业的发展而引起人们关注。
对于“大数据”研究机构Gartner给出了定义:“它是指无法在一定时间范围内用常规软件工具进行捕捉、管理和处理的数据集合,是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力的海量、高增长率和多样化的信息资产。”
二、 大数据分析是什么意思
大数据分析是指对规模巨大的数据进行分析。大数据可以概括为4个V, 数据量大(Volume)、速度快(Velocity)、类型多(Variety)、价值密度低(Veracity)。大数据作为时下最火热的IT行业的词汇,随之而来的数据仓库、数据安全、数据分析、数据挖掘等等围绕大数据的商业价值的利用逐渐成为行业人士争相追捧的利润焦点。随着大数据时代1的来临,大数据分析也应运而生。
在工业时代控制了石油,谁就控制了经济,那么在数字时代谁掌握了大数据,谁也许就掌握了行业发展的命脉。
我国大数据发展具备重要优势
随着互联网、大数据、超级计算、传感器等技术的加速突破和广泛应用,世界人工智能的发展正在进入一个崭新的阶段。作为互联网应用创新大国,近年来,中国在大数据领域的发展尤为迅猛。
在大数据领域,我国的发展优势十分明显。百度总裁李彦宏表示,“大数据优势是中国发展人工智能的重要优势。”李彦宏认为,人工智能技术发展需要有大量的数据积累进行训练,而中国拥有七亿多网民,使用同样的语言,在数据积累方面优势明显。
同样,数字中国联合会主席吴鹰对此表示赞同。吴鹰认为,相比美国,我国在算法上相对落后,但是在大数据方面整体是较为强大的。因为中国人口多、应用场景多,产生了大量数据,这种优势一般难以企及。
国内大数据市场呈井喷式发展
业内分析,预计2017-2020年国内大数据市场仍将保持30%的增长速度,到2020年大概接近600亿元规模。全球的增长率大概在20%左右,也就是说中国在大数据方面的产出、应用包括未来的前景都是要好于全球的。
目前我国大数据市场呈现出几大特点。一是顶层设计不断加强,政策机制日益健全。拒不完全统计,发改委工信部网信办等46个部委共同建立了促进大数据发展部际联席会议制度,全国有30多个省市制定实施了大数据相关的政策文件。
二是行业应用逐渐深入,对经济发展的带动作用凸显。包括在电信、互联网、交通、金融、工业、农业、医疗等行业的应用不断深化,大大改善了人们的生产生活方式;三是区域布局持续优化,产业规模不断壮大。全国推进建设了八个国家大数据综合试验区,开展大数据方面的实践探索,形成了一批集聚发展区。
个人隐私数据需加上一把锁
大数据的蓬勃发展是一方面,但安全隐患是另一方面。目前行业内部侵犯公民个人信息案件频发,让人忧心忡忡。例如,多家二手车网上交易平台均可以查找公民个人车辆信息。大数据时代,个人信息如何保护,值得深思。
行业内部侵犯公民个人信息案件应引起高度重视,一方面要加大对拥有公民大数据的相关单位和企业的安全管理、监督力度,加强对存在问题的网络服务商的检查整治,强化员工职业道德教育和法制教育,从源头上堵住公民个人信息泄露的阀门;另一方面也要加大对侵犯公民个人信息案件打击力度。
当然,民众自身也需提升安全意识。民众要养成保护个人信息的习惯,日常生活中不随意丢弃包含个人信息的单据;避免在社交软件上透漏真实身份信息;收到短信、即时聊天软件发来的不明链接勿轻易点击;接到相关诈骗电话后提高警惕,以预防个人信息泄露及次生犯罪等。
首先,数据必须是安全的。所谓安全,是银行自身产生的数据是保障用户权益不被侵害的,不被用在其他用途的。其次,谨慎使用外部数据。目前市面上,一些所谓的大数据风控公司在数据的获取和使用上存在法规上的漏洞,污染严重的数据只会给业务发展带来更大的障碍,需谨慎对待。合规合法的数据源是控制自身风险的一个方法。
再者,更基础和更深入地研究数据。一些游戏公司对用户行为数据的挖掘比较擅长,由此还有十分对口的游戏心理学来进行研究。虽然,金融数据和游戏数据的区别很大,但游戏公司在玩家隐私保护和玩家需求挖掘方面确实有其独到的特点,这是十分值得银行去琢磨的。
最后,在征信市场完善和物联网金融时代来临之前做好准备。物联网金融时代,数据量将更为庞大,如果一开始的数据就是虚假的,那么清洗和利用的价值就会相当于零,甚至会把数字化转型带偏跑道。
对于金融机构来说,数据整合和商业智能大部分还是大数据团队来主导,但是实现数据价值的变现需要全公司的重视,首先是领导的重视
总结;数据化转型是非常重要的工作。在传统金融行业里普遍存在“拍脑门决策”的问题,但是一旦建立了数据文化就能更好地控制这些问题,如领导在凭感觉做决策时,员工可以通过数据说服老板做更科学的决策。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)