首先,物理网是一种统称,并非产品。所以需要分开来看。
物理网结构上来说分为:产品、平台、系统(可包含在产品中)、服务器
简单的说
电子模块的设计
结构模块的设计(包括工业设计、机械设计等)
程序编写(即功能程序、系统程序等等)
后面需要做的就是:
架设服务器(这个并非必须,因为现在大的服务商都提供。这里所指的是内网或者是私人网络)
建立平台使得产品功能对接(现在也有一大堆的平台可以使用,所以也不是必须自己来建的)
TCP/IP协议分为4个层次,自上而下依次为应用层、传输层、网络层、网络接口层。各层的功能如下:
1、应用层:对客户发出的一个请求,服务器作出响应并提供相应的服务。
2、传输层:通信双方的主机提供端到端的服务,传输层对信息流具有调节作用,提供可靠性传输,确保数据到达无误。
3、网络层:进行网络互连,根据网间报文IP地址,从一个网络通过路由器传到另一网络。
4、网络接口层:负责接收IP数据报,并负责把这些数据报发送到指定网络上。
RFID属于物联网的感知层,也就是在前端感知数据,比如车联网,一般就用UR5206远距离读卡器感知车辆上的标签,为后端的应用提供原始数据。
物联网基本应用流程主要有三步:
全面感知。
可靠传送。
智能处理。
因而其层次结构也可相应的分为:感知层、传输层,应用层。
上述三层体系架构是目前我认为较为妥当的物联网分层,而一些厂家会对这些分层进行复杂化以突显其技术精细程度和实力。
TCP/IP是有共网络接口层,网络层,运输层和应用层共四层协议系统。
第一层是应用层,功能是服务于应用进程的,就是向用户提供数据加上编码和对话对的控制。
第二层是运输层,功能是能够解决诸如端到端可靠性和保证数据按照正确的顺序到达。包括所给数据应该送给哪个应用程序。
第三层是网络层,功能是进行网络连接的建立,和终止及IP地址的寻找最佳途径等功能。
第四层是网络接口层,功能是传输数据的物理媒介,是数据包从一个设备的网络层传输到另外一个设备的网络层的方法。还有控制组成网络的硬件设备。
扩展资料:
TCP/IP协议不仅仅指的是TCP 和IP两个协议,而是指一个由FTP、SMTP、TCP、UDP、IP等协议构成的协议簇, 只是因为在TCP/IP协议中TCP协议和IP协议最具代表性,所以被称为TCP/IP协议。
TCP/IP协议产生过程为:
(1)1973年,卡恩与瑟夫开发出了TCP/IP协议中最核心的两个协议:TCP协议和IP协议。
(2)1974年12月,卡恩与瑟夫正式发表了TCP/IP协议并对其进行了详细的说明。同时,为了验证TCP/IP协议的可用性,使一个数据包由一端发出,在经过近10万km的旅程后到达服务端。
在这次传输中,数据包没有丢失一个字节,这成分说明了TCP/IP协议的成功。
(3)1983年元旦,TCP/IP协议正式替代NCP,从此以后TCP/IP成为大部分因特网共同遵守的一种网络规则。
(4)1984年,TCP/IP协议得到美国国防部的肯定,成为多数计算机共同遵守的一个标准。
(5)2005年9月9日卡恩和瑟夫由于他们对于美国文化做出的卓越贡献被授予总统自由勋章。
TCP/IP协议能够迅速发展起来并成为事实上的标准,是它恰好适应了世界范围内数据通信的需要。它有以下特点:
(1)协议标准是完全开放的,可以供用户免费使用,并且独立于特定的计算机硬件与 *** 作系统。
(2)独立于网络硬件系统,可以运行在广域网,更适合于互联网。
(3)网络地址统一分配,网络中每一设备和终端都具有一个唯一地址。
(4)高层协议标准化,可以提供多种多样可靠网络服务。
参考资料:
1数据链路层:
数据链路层是物理传输通道,可使用多种传输介质传输,可建立在任何物理传输网上。比如光纤、双绞线等。
2网络层:其主要功能是要完成网络中主机间“分组”(Packet)的传输。
含有4个协议:
(1)网际协议IP
负责分组数据的传输,各个IP数据之间是相互独立的。
(2)互联网控制报文协议ICMP
IP层内特殊的报文机制,起控制作用,能发送报告差错或提供有关意外情况的信息,因为ICMP的数据报通过IP送出因此功能上属于网络的第3层。
3)地址转换协议ARP
为了让差错或意外情况的信息能在物理网上传送到目的地,必须知道彼此的物理地址,这样就存在把互联网地址(是32位的IP地址来标识,是一种逻辑地址)转换为物理地址的要求,这就需要在网络层上有一组服务(协议)能将IP地址转换为相应的网络地址,这组协议就是APP(可以把互联网地址看成是外识别地址和物理地址看成是内识别地址)
(4)反向地址转换协议RARP
RARP用于特殊情况,当只有自己的物理地址没有IP地址时,可通过RARP获得IP地址,如果遇到断电或重启状态下,开机后还必需再使用RARP重新获取IP地址,广泛用于获取无盘工作站的IP地址。
3传输层:其主要任务是向上一层提供可靠的端到端(End-to-End)服务,确保“报文”无差错、有序、不丢失、无重复地传输。它向高层屏蔽了下层数据通信的细节,是计算机通信体系结构中最关键的一层。包含以下2个重要协议:
(1)TCP :
TCP是TCP/IP体系中的传输层协议处于第4层传输层,负责数据的可靠传输(“三次握手”-建立连接、数据传送、关闭连接)。
(2)UDP:
和TCP相比,数据传输的可靠性低,适合少量的可靠性要求不高的数据传输。
4应用层:应用层确定进程间通信的性质,以满足用户的需要。
在应用层提供了多个常用协议。
①Telnet(Remote Login):远程登录
②FTP(File Transfer Protocol):文件传输协议
③SMTP(Simple Mail Transfer Protocol):简单邮件传输协议
④POP3(Post Office Protocol 3):第三代邮局协议
⑤>物联网与云计算各自具备很多优势,结合方式我们可以分为以下几种:
第一,一对多方式。即单一云计算中心,多业务终端。此类模式中,分布范围较小的各物联网终端(传感器、摄像头或3G手机等),把云中心或部分云中心做为数据的处理中心,终端所获得信息、数据统一由云中心处理及存储,云中心提供统一界面给使用者 *** 作或者查看。
这类应用非常多,如小区及家庭的监控、对某一高速路段的监测、公共设施的保护等都可以用此类信息。这类云计算中心,可提供海量存储空间和统一界面、分级管理等功能,为日常生活提供较好的帮助。
第二,多对多方式,即多个云计算中心,大量业务终端。对于很多区域跨度较大的企业、单位而言,多中心、大量终端的模式较为适合。譬如,一个跨多地区或者多国家的企业,因其分公司或分厂较多,要对其各公司或工厂的生产流程进行监控、对相关的产品进行质量跟踪等等。
有些数据或者信息需要及时甚至实时共享给各个终端的使用者也可采取这种方式。这个的模式的前提是我们的云计算中心要包含公共云和私有云,并且他们之间的互联没有障碍。这样,对于有些机密的事情,比如企业机密等可较好地保密而又不影响信息的传递与传播。
第三,信息和应用的处理分层化,海量业务终端。这种模式可以针对用户的范围广、信息及数据种类多、安全性要求高等特征来打造。当前,客户对各种海量数据的处理需求越来越多,针对此情况,我们可以根据客户需求及云计算中心的分布进行合理的分配。对需要大量数据传送,但是安全性要求不高的,如视频数据、游戏数据等,我们可以采取本地云计算中心处理或存储。对于计算要求高,数据量不大的情况,可以放在专门负责高端运算的云计算中心。而对于数据安全要求非常高的信息和数据,我们可以放在具有灾难备份功能的云计算中心。此模式根据应用模式和场景,对各种信息、数据进行分类处理,然后选择相关的途径给予相应的终端。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)