物联网简单的说就是物物相连的网络,通过物联网能够构建出一个万物互联的世界,而万物互联的世界必然会带来万物智能,从这个角度来看,物联网的发展空间还是非常广阔的。
物联网通常分为四个层次,分别是设备、网络、平台和应用。设备往往是物联网设计的第一步,不同的设备具备不同的功能,比如大量的传感器设备能够获取各种环境参数,对于一些工业生产环境来说,这些传感器还是非常重要的。传感器设备往往需要通过网关把数据发送到物联网平台,物联网平台根据传感器发回来的数据进行针对性的分析和判断,以便于决策是否进行相应的调整,而这正是大数据和人工智能所要关心的事情。从这个角度来看,物联网、大数据和人工智能的关系是非常密切的。
当前互联网正在从消费互联网向产业互联网发展,产业互联网需要综合采用物联网、大数据、云计算、人工智能等技术来赋能传统行业。物联网是产业互联网相关技术的基础,因为没有物联网就没有大数据,更谈不上智能化,所以物联网建设通常是产业互联网建设的排头兵。从这个角度来看,未来学习物联网相关技术是不错的选择,会有众多的发展机会。
物联网平台的解决方案是比较复杂的,目前物联网平台的研发依然处在未完全成熟的阶段,大量的技术标准还有待建立和完善,相信随着5G标准的落地,会进一步促进物联网平台标准化的建设。
什么是物联网,发展趋势怎样。学习物联网有前途吗?去年我应邀参加了上海物联网培训会,认识了物联网,并与我们陕西杨凌祥荷牌有机富硒农业专业研发有机富硒农业番茄,黄瓜,甜椒,马铃薯,红薯,猕猴桃,葡萄,苹果与上海合其家物联网公司董事长林总进行现场演讲与沟通。互联网是由美国制定的技术标准,而物联网是由中国制定技术标准的。通过物联网学习,认识了物联网公司各界朋友,今后物联网区块链将是我国重奌发展的方向,万物相连,物联网是未来信息技术发展的方向。也是信息技术一场革命。物联网是我国信息技术的发展方向。
大数据不是
抽样数据,而是全部的数据;
所以大数据必须依赖云计算,不可能是局域网的;
物联网目标是把所有的物体都连接到互联网,并把物体虚拟化,数据上传,自然就是大数据了。
云计算是为了大并发、大数据下的解决实际运算问题;
大数据是为了解决海量数据分析问题;
物联网是解决设备与软件的融合问题;
可见,它们之间的关系是互相关联、互相作用的:
物联网是很多大数据的来源(设备数据),而大量设备数据的采集、控制、服务要依托云计算,设备数据的分析要依赖于大数据,而大数据的采集、分析同样依托云计算,物联网反过来能为云计算提供ISSA层的设备和服务控制,大数据分析又能为云计算所产生的运营数据提供分析、决策依据。
1高效分布式
必须是高效的分布式系统。物联网产生的数据量巨大,仅中国而言,就有5亿多台智能电表,每台电表每隔15分钟采集一次数据,一天全国智能电表就会产生500多亿条记录。这么大的数据量,任何一台服务器都无能力处理,因此处理系统必须是分布式的,水平扩展的。为降低成本,一个节点的处理性能必须是高效的,需要支持数据的快速写入和快速查询。
2实时处理
必须是实时处理的系统。互联网大数据处理,大家所熟悉的场景是用户画像、推荐系统、舆情分析等等,这些场景并不需要什么实时性,批处理即可。但是对于物联网场景,需要基于采集的数据做实时预警、决策,延时要控制在秒级以内。如果计算没有实时性,物联网的商业价值就大打折扣。
3高可靠性
需要运营商级别的高可靠服务。物联网系统对接的往往是生产、经营系统,如果数据处理系统宕机,直接导致停产,产生经济有损失、导致对终端消费者的服务无法正常提供。比如智能电表,如果系统出问题,直接导致的是千家万户无法正常用电。因此物联网大数据系统必须是高可靠的,必须支持数据实时备份,必须支持异地容灾,必须支持软件、硬件在线升级,必须支持在线IDC机房迁移,否则服务一定有被中断的可能。
4高效缓存
需要高效的缓存功能。绝大部分场景,都需要能快速获取设备当前状态或其他信息,用以报警、大屏展示或其他。系统需要提供一高效机制,让用户可以获取全部、或符合过滤条件的部分设备的最新状态。
5实时流式计算
需要实时流式计算。各种实时预警或预测已经不是简单的基于某一个阈值进行,而是需要通过将一个或多个设备产生的数据流进行实时聚合计算,不只是基于一个时间点、而是基于一个时间窗口进行计算。不仅如此,计算的需求也相当复杂,因场景而异,应容许用户自定义函数进行计算。
6数据订阅
需要支持数据订阅。与通用大数据平台比较一致,同一组数据往往有很多应用都需要,因此系统应该提供订阅功能,只要有新的数据更新,就应该实时提醒应用。而且这个订阅也应该是个性化的,容许应用设置过滤条件,比如只订阅某个物理量五分钟的平均值。
有人已经预言未来的时代僵尸一个“大数据”的时代,关注大数据的人越来越多,同时物联网的出现与发展推动了数据采集的能力,为数据库的建立提供了有力的支撑。而大数据的处理结果可以通过物联网这一平台有效地执行。数据的采集处理应用必将成为时代的发展主题。物联网概念的提出
1998年,MIT的Kevin Ashton第一次提出:把RFID技术与传感器技术应用于日常物品中形成一个“物联网”
2005年,ITU报告:物联网是通过RFID和智能计算等技术实现全世界设备互联互联的网络。
2008年,IBM提出:把传感器设备安装到各种物体中,并且普遍链接形成网络,即“物联网”,进而再次基础上形成“智慧地球”。
物联网形式早已存在,统一意义上的物联网概念提出是在架构在互联网发展成熟的基础上。
物联网是互联网的应用拓展,与其说物联网是网络,不如说物联网是业务和应用。因此,应用创新是物联网发展的核心,以用户体验为核心是物联网发展的灵魂。
大数据,指的是所涉及的资料量规模据达到无法透过目前主流软件工具,在河里时间内达到管理、处理并且整理成为帮助企业经营决策更有积极目的的资讯。
大数据的误区
1、“大数据”不等于“海量数据”;
2、“大数据”不是一门“新兴技术”;
3、“大数据”不仅仅是“一种理念”。
智慧化的新经济形态
外在:物联网
人和机器的智慧融合
信息和物理世界的智慧融合
信息化与三大产业的智慧融合
内涵:大数据
每个人都是数据产生者、拥有者和消费者;
数据成为新“工业”革命的原材料;
数据中提出信息和智慧
新范式的确立表现为智慧产品的普遍化。
以上由物联传媒转载,如有侵权联系删除物联网中如何使用大数据
在瞬息万变的世界中,组织很难赶上不断涌现的新概念。但人们需要区分哪些技术和概念是有用的,哪些只是一种炒作。在数据分析领域,正是大数据引发了这个时代的质疑。而如今,当这个概念日益清晰时,一个新的应用浪潮即将到来:人们需要了解在物联网中如何使用大数据。
关于什么是大数据及其可带来的价值的热烈讨论已经开始消退。然而,当专家们开始大量使用大数据和物联网的技术组合时,人们又再一次试图定义物联网与大数据连接的方式。
物联网与大数据的接触点
简而言之,物联网是连接到互联网的设备网络。这些设备具有内置的传感器,可以生成数据并对外发送,从而可以相互通信,并与分析系统进行通信。
即使对物联网设备仍然很陌生,这个概念已经在人们的生活中找到了方向。设想一个智能家庭,它可以通过调节供暖和空调系统的运行模式来调节温度,可以开启和关闭照明系统,可以发出有关漏水或气体泄漏或外人入侵的信号。最重要的是,智能家居可以在没有户主参与的情况下做到这一点。
物联网业务的一个典型例子是机器监控,使用安装在不同机器部件上的多个传感器。这些传感器将有关温度、振动、压力、润滑等读数发送给分析系统,分析系统对其进行处理并识别一些隐藏的模式和相关性。如果系统识别出读数与某种故障模式相匹配,则会向维护团队发送即时警报。
以下将回答物联网如何与大数据相交的棘手问题。当一些技术正在炒作时,物联网可能是其中之一。实际上,物联网数据是大数据的类型之一,这使得大数据技术堆栈在所有阶段处理物联网数据都是一个很好的(但不是唯一的)选项。对于数据摄取,企业可以使用Apache Kafka,因为该技术支持数据流。Apache Hadoop生态系统是数据存储和处理历史数据的理想选择,而Apache Spark则非常适合近实时数据处理。
大数据使用案例中的物联网数据规则
而人们开始了解制造商所提供的用例。同时,也可以在其他行业了解物联网数据,了解物联网大数据用例。
医疗保健:在医疗保健领域,配戴移动应用技术的可穿戴传感器设备可以实现远程健康监测。该方法的工作原理如下:传感器监测特定患者的状态(心跳、体温、血压、呼吸率等),并将这些数据实时传送到云端,然后传送到应用程序。分析系统不断搜索所有患者物联网数据中的隐藏趋势,并试图找出可能引发并发症的模式。如果物联网的大数据分析显示某些令人担忧的症状,系统会立即向患者和医生发送警报。
零售:知名零售商亚马逊公司最近推出了一个新概念 - Amazon Go。这是一家没有收银员的商店,顾客不必排队等待购物。要进入商店只用扫描他们的智能手机即可。事实上,在这里采用的是物联网和大数据分析技术:商店里遍布传感器和摄像头,顾客在商店中购物,摄像头能够区分其中的每一个人,并且跟踪他们放入购物车或返回货架的所有产品。重量传感器提供了一个额外的控制点:他们可以认识到特定的产品已经不在货架。当顾客完成购物时,他们选择的所有产品都显示在真实和虚拟的篮子中,顾客可以离开商店,系统将在稍后收费。
毫无疑问,Amazon Go是一个有远见的概念。然而,零售业表现出更多脚踏实地的想法,例如智能物流技术,可以跟踪和优化路线,并识别每位卡车司机的行为模式。零售商还使用信标激活访问者的应用程序,并在访问者进入商店并通过信标时,推出相关产品优惠和促销活动。访客会因此感到满意,因为他们收到参加促销活动提供的个性化优惠。同时,信标对商店员工也有帮助,因为它们可以识别需要高质量服务的具有价值的客户。
银行业:银行业也从物联网中受益。银行正在努力获取客户全方位的视角,并提供无缝的客户体验。虽然这一切始于智能手机的积极参与,但物联网进一步扩展至可穿戴设备。例如,美国银行与FitPay公司合作进一步推动可穿戴支付技术。通过这种合作,持卡人将能够直接从他们的智能手表和其他可穿戴设备付款。银行将能够识别客户的行为和偏好。
语结
尽管围绕物联网进行了更多的炒作,但它只是大数据源其中之一。毫无疑问,这是一个有价值的领域,而且正在不断发展。如果企业已经实施了一些大数据解决方案,也许已经处理物联网数据,如果企业正计划采用大数据方案,希望以上描述的用例可以激发一些伟大的想法。大数据是信息化社会无形的生产资料,其概念被社会各界不断演绎出多种版本,但关于大数据、物联网、之间的关系,很多人不甚明了。对此,同方物联网产业应用本部技术总监赵英,对此做出了详细的解读。大数据、物联网、之间的关系简单来说就是:大数据的发展源于物联网技术的应用,并用于支撑智慧城市的发展。物联网技术作为互联网应用的拓展,正处于大发展阶段。物联网是智慧城市的基础,但智慧城市的范畴相比物联网而言更为广泛;智慧城市的衡量指标由大数据来体现,大数据促进智慧城市的发展;物联网是大数据产生的催化剂,大数据源于于物联网应用。
物联网对大数据的意义方面,赵英举了个例子来说明物联网技术对大数据的推进。去年北京721暴雨之后,政府采取了很多解决措施,很重要的一个体现是,北京市科委很快就立了专项基金去给受灾的房山和门头沟这两个区进行应急管理能力的提升以及信息化的建设。同方参与了门头沟的项目,帮助门头沟提升预警能力。同方对门头沟原来的应急平台进行了改造和提升。比如对水位的监测,在有些重点立交桥下安装水位计,水位到一定程度会发生预警,相关部门就可以据此采取一些措施,这就是物联网技术的应用。物联网通过大量的网络传感器来接受数据
当前收集的信息数据类型不同,物联网的数据特征与大数据不同,主要特征有:
heterogeneity, variety, unstructured feature, noise, and high redundancy
物联网数据特征:异构型、多样性、无结构化特征、噪声、高冗余。
大数据的4V特征:大量化、多样化、快速化、价值化
当今物联网数据不是的大数据最重要的组成部分,但是据惠普的预测,到2030年,传感器数量将达到1万亿,成为大数据的重要组成部分。
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)