我认为在电动汽车领域,物联网可以运用到以下几个环节:
1应用于制造环节
虽然国内所生产的电动汽车零件具有较大容量、高效率的高电压锂离子蓄电池,但是由于生产技术受限,所生产出来的高电压锂离子蓄电池的一致性不足,面对这种情况国内的电动汽车零件生产商就可以引入无线射频识别技术来管理相对应的产品,从而提高生产的一致性,实现全面的自动化生产运作。
例如可以在进行电动汽车零件以及整车制作过程当中,给原材料植入原材料自身信息的EPC 标签,通过这种标签就可以查询到材料的基本信息,就算原材料被加工成各种汽车部件,标签也不会消失,自然而然制造的信息也就不会消失。除此之外还可以在生产线所有的工作点设置专门的识读器,对重要零部件的生产进行实时的监控,与此同时还能够将原材料的各种信息及时传送到数据中心进行统一的梳理和存储,通过一系列 *** 作车辆即使到达消费者手里,人们也可以通过信息对车辆生产的各个过程进行源头追溯,从而也就保障了汽车生产商所生产出来电动汽车的整体质量。
2应用于售后环节中
汽车生产商将已经生产完成的汽车通过物流运输等方式运输的各地的经销商处,在整个运输和销售过程当中,经销网点和物流信息都将会被纳入到车辆的EPC 标签当中,经销商所销售出的车辆也会将购买者的信息一同录入到车辆的EPC 标签当中,之后这些信息就会被传送到电动汽车制造厂商的数据库当中,制造厂商再将这些信息进行统一的管理,将所有车辆以及车辆当中的所有信息进行集中,进而汇总成电动汽车车辆信息系统。
3应用于充电环节
充电问题是一直围绕着电动汽车所出现的主要问题,但是在未来随着互联网和科学技术的发展,就可以彻底解决电动汽车的充电问题。智能电网系统和传统电网系统的区别就是智能电网系统比传统电网加了物联网技术。
除此之外,智能电网系统还拥有更加先进的电力技术和设施,从而保证可以对整个电力系统进行实时的监测,进而可以实现真正的智能化管理。如果纯电动汽车想要进行充电工作,智能充电设施可以通过延时充电等功能来对电力进行 *** 作。例如在夜晚对电动汽车进行充电,那么将会缓解白天的电网压力,从而进一步的提升电能的使用效率,增加电网系统的节能效果。未来如若电动汽车占据汽车市场的主导地位,那么就可以在电动汽车上装置移动储能设施,对电网进行随时的电能会输工作,从而降低城市和国家的用电压力,节约电力资源,降低能源消耗。
物联网技术虽然发展迅速,但仍存在以下不足之处:1 安全问题:物联网设备和系统的安全问题一直是一个热点和难点,缺乏有效的安全保护措施容易导致设备被攻击、信息泄露等问题。
2 标准化问题:由于物联网涉及到多个领域和技术,标准化工作并不完善,导致不同厂商和设备之间的兼容性和互联互通存在问题。
3 能耗问题:由于物联网设备需要不断收集和传输数据,因此能源消耗较大,需要更加智能化和节能的设计。
4 隐私问题:物联网设备收集的数据可能包含用户的隐私信息,如何保护用户的隐私成为一个重要的问题。
5 数据处理问题:物联网设备所产生的数据量庞大,如何高效地处理和分析数据,提取有用的信息,是一个需要解决的问题。
6 成本问题:物联网设备和系统的成本较高,对于一些中小企业和个人用户来说可能承受不起。
因此,未来需要在这些方面加强研究和改进,提高物联网技术的安全性、标准化、能源效率、隐私保护、数据处理和成本效益等方面的表现,以推动物联网技术的可持续发展。
另一家基于蓝牙技术推出的无源物联网方案的公司为Atmosic,是一家创新型无晶圆厂半导体公司,该公司宣称在超低功耗射频、射频唤醒和受控能量收集三大技术方面发力。 其中,超低功耗射频技术是在蓝牙5平台上实现了超低功耗射频功能;射频唤醒技术是为射频提供了轻度休眠模式和深度休眠模式两套感知系统;受控能量收集技术目的是保证功能稳定可用,同时最大限度减少设备和系统对电池电源的依赖。在三大技术支持下,Atmosic目前有两款蓝牙芯片产品,其中其M3系列产品综合应用这三大技术,支持无电池状态下的运行。目前,该公司产品已用于医疗、穿戴设备等领域。
基于WiFi和LoRa的无源物联网创新,笔者在《彻底抛弃电池,5G支持无源物联网,比NB-IoT影响更广泛的技术要来了?》一文中也进行了介绍,主要源于 美国华盛顿大学电子工程学院的研究人员提出了通过对射频信号的反射调制技术来实现无源设备供电和传输数据。 在这一技术指引下,该研究团队研发除了Passive WiFi的无源技术,并进一步将该技术用于LoRa中,实现数百米长距离无源节点传输。
上月, 华为常务董事、ICT产品与解决方案总裁汪涛在一次公开演讲中,提出了面向55G的无源物联网设想,希望5G网络能将无源物联网纳入其中,5G无源物联网的 探索 开始。
虽然无源物联网会带来海量的连接规模,但目前相关技术还并不成熟,接下来可能会经过百家争鸣阶段,随着商用落地,部分技术会形成事实标准,在此之后推动无源物联网规模快速扩展。从目前看,无源物联网发展还是非常分散,正如LPWAN发展历程一样,这一过程也需要很长时间,建立产业生态更为关键。
2021意法半导体NFC研讨会重磅来袭!
现场参会更有机会获得大疆无人机、戴森吹风机、京东购物卡等礼品~
点击即可查看 “2021年AIoT产业全景图谱”
锂电池的概述 锂电池是一类由锂金属或锂合金为负极材料、使用非水电解质溶液的电池。最早出现的锂电池来自于伟大的发明家爱迪生。 由于锂金属的化学特性非常活泼,使得锂金属的加工、保存、使用,对环境要求非常高。2018年10月4日,Wi-Fi联盟正式宣布将下一代Wi-Fi技术80211ax更名为Wi-Fi 6,并将前两代技术80211n和80211ac分别更名为Wi-Fi 4和Wi-Fi 5。
Wi-Fi 6相比起Wi-Fi 4/5来说不只是速率变得更快了,同时也针对不同场景和相关技术做了很多升级和优化,下面将从技术方面,看看WIFI6带来的新变化。
从WIFI标准的发展历程中不难发现,WIFI标准,最大的提升是数据传输速率,通过更高调制方式,更大的频宽,来实现更高的传输速率。但是实际的无线场景使用中,用户对于无线的需求是多样的,有的场景需要低延时,对带宽的要求可能并不高,有的场景则需要高带宽,对延时不敏感。因为接入无线的设备多样,场景复杂。在制订无线标准,设计无线网络的时候,需要关注的点比较多,要结合需求和场景,真正的为无线用户带来良好的体验。
WIFI6在调制,编码,多用户并发等方面进行了技术改进和优化,与速度提升相比,更关注因应用,用户体验,无线环境的整体优化。更贴合于现阶段多Wi-Fi终端、多应用普及的场景。现阶段各类终端和应用繁多,如视频类应用、即时通讯类应用等,因此无线场景中多并发、短报文的情况越来越多,早期的Wi-Fi协议应对这种情景并无技术优势,而Wi-Fi 6针对这些场景做了大量的改进和优化,能大幅度的提升大家的无线体验。
Wi-Fi 6作为致力提升无线使用效率和用户真实体验的标准,定义了很多和以往协议截然不同的技术规格。例如更高的调制阶数(1024-QAM)、更窄的子载波间隔、上下行OFDMA技术、上下行MU-MIMO技术(其中下行MU-MIMO在Wi-Fi 5时引入)、空间复用技术等。
这些特性在24G和5G网络下均未享受到。WIFI5的特性仅支持5G。WIFI4的特性支持24G和5G。
WIFI6的最高理论速度是96Gpbs。WIFI5是69Gbps,单条空间流80MHz下的速度从433Mbps提高到6004Mbps
1024-QAM(Quadrature Amplitude Modulation,正交振幅调制),这是一种调制方式,所谓调制就是将电信号转换为无线电波的过程,反之则称为解调,调制方式越高阶,转换过程中数据密度就越高。
QAM编码是采用二维(点阵)调制方式,实际应用中QAM数值是2的N次方。比如说64-QAM,64是2的6次方,一次就可以传输6个bit的数据;Wi-Fi 5支持的最高调制是256-QAM,因此Wi-Fi 5一次可以携带8个bit的数据信息,Wi-Fi 6支持的最高调制是1024-QAM,Wi-Fi 6一次可以携带10bit,通过使用1024-QAM,让Wi-Fi 6的物理层协商速率提升了25%。
Wi-Fi 6对子载波间隔进行了重新设计,将子载波间隔从Wi-Fi 5的3125kHz,变成78125kHz,即相同信道带宽带(MHz)的情况下,Wi-Fi 6的子载波数量是Wi-Fi5的4倍。
由于更窄子载波间隔的引入,也让单帧容量增至原来的四倍(即256个子载波/20MHz),单帧发送时长自然也是Wi-Fi 4/5(32微秒)的四倍(128微秒),但帧间隔仅为原来的两倍(08微秒),即每一帧的传输周期是136微秒。综合起来,帧间隔时间开销从Wi-Fi 4/5的1111%04/(32+04)=1111%降低到了588%08/(128+08)=588%,因此Wi-Fi 6的整体效率再提升588%,即物理层协商速率提升了588%。
在相同信道频宽80MHz下的WIFI5和WIFI6的有效载波占比
通过更高阶的调制技术和更窄的子载波间隔,让Wi-Fi 6的理论速率(160MHz频宽,8条空间流)从Wi-Fi 5的69Gbps提升到96Gbps。
Wi-Fi 6 将Wi-Fi 频道从80 MHz 提升到160 MHz。
为了满足高密度的无线连接,引入的新特性
MU-MIMO(Multi-User Multiple-Input Multiple-Output,多用户的多进多出),它让AP可以同时与多台终端并发通信。
Wi-Fi 6在Wi-Fi 5下行MU-MIMO的基础上新增上行MU-MIMO, WIFI5的MU-MIMO仅适用于下载 。同时也把Wi-Fi 5最大支持4 4的下行MU-MIMO提升到最大支持8 8的 上下行MU-MIMO ,支持同时向8个终端发送数据,与Wi-Fi 5相比,下行链路容量增加了2倍,上行链路容量增加了8倍,从而大幅提高无线接入总容量,这表示无论您正在串流、下载、游玩VR/AR、MMO's 或RPG's,Wi-Fi 6 的8条串流,都能提供所有应用足够的频宽。
传统的MIMO严格来说应该叫做SU-MIMO(Single-user MIMO,单用户MIMO),虽然支持多天线同步传输,在同一个信道同一时刻,只能与一个终端通信,多终端之间仍为串行传输。
MU-MIMO解决了同一AP下多用户并发传输的问题,将原来的HUB模式,升级为了交换模式。
OFDMA技术是在频域上将无线信道划分为多个子信道(子载波),形成一个个射频资源单元,用户传输数据时,数据将承载在每个资源单元上,而不是像Wi-Fi 4/5(使用OFDM技术)时那样占用整个信道。
Wi-Fi从80211a(1999年发布的第三代Wi-Fi协议)开始就采用OFDM调制作为核心信道调制方案,Wi-Fi 6在OFDM的基础上加入多址(即多用户)技术,从而演进成OFDMA(Orthogonal Frequency Division Multiple Access,正交频分多址)。
OFDM调制原理是将信道切分为子载波,但单一信道内的子载波须同时使用。OFDMA调制则更进一步,将现有的80211信道(20、40、80和160MHz宽度)划分成具有固定数量子载波的较小子信道,并将特定子载波集进一步指派给个别STA,从而为多个用户同时服务。
OFDMA划分的射频资源单元就像把货车的载货箱划分了很多小格子,这样货车在拉货时就可以进行灵活组合,不论是拉大货物还是小货物,都可以装满整个货箱再出发,充分利用每台货车的资源。
显示已有一个天线运作的情景。实际路由器是多天线,与此情况类似。
通过OFDMA技术可实现在每个时间段内多个终端同时并行传输,不必依次排队等待、相互竞争,提升了效率,提高了无线接入的密度,降低了排队的等待时延。
OFDMA和MU-MIMO的适用场景对比
Spatial Reuse(空间复用),也被称作“BSS着色”(BSS coloring),通过此技术可以实现更多同步传输,即AP可以识别两个相距不远但并不相邻的AP和终端设备,能够在同一时间内实现无线并发传输而不会相互影响。用于解决不同AP在相同信道下并发冲突的问题。
为了在密集部署方案中提高系统级性能和频谱资源的有效使用,80211ax标准实现了空间重用技术。STA可以识别来自重叠基本服务集(BSS)的信号,并基于该信息做出关于介质争用和干扰管理的决定。
BSS着色是80211ah中引入的一种机制,用于为每个BSS分配不同的“颜色”,将其扩展到11ax,根据检测到的颜色分配新的频道访问行为。尽可能的情况下最大限度地减少同频干扰。
传统传输机制,每次发送数据之前,会监听无线信道上有无其他AP也在传送数据,如果有,先避让,等下个时间段再传送。这意味着多个AP工作于同一信道时,由于采用轮流单独通信的方式,会大幅降低网络容量。
BBS Coloring机制,即在数据报头加入6bits的BSS Color来指定不同的AP,这样一来,当路由器或设备在发送数据前侦听到信道已被占用时,会首先检查该“占用”的BSS Color,确定是否是同一AP的网络,如果不是,则不用避让,从而允许多个AP在同一信道上运行,并智能管理多用户同时并行传输。
目标唤醒时间( Target Wake Time,简称 TWT) 让设备可自行协商它们何时以及多常唤醒以发送或接收资料,这项功能可以增加设备的休眠时间并显著延长行动设备和物联网设备的电池寿命。
这个服务可以降低支持WIFI6终端的电力消耗。现在很多设备连接WIFI的情况下耗电严重,尤其是使用电池的IOT物联网设备。减少用户之间的争用和冲突,显著提升STA的休眠时间,节约电力消耗。常用的手机,笔记本等,因为需要持续的网络连接和数据传输,这项技术的收益并不明显。
WPA2加密协议,在2017年10月被完全破解,随着WIFI6,还推出了WPA3安全协议。
主要体现在:
公共场所,即使是open的SSID,也会提供无感知的数据传输加密
使用SAW替换PSK,使用4次握手提供更高的安全性,对于WPA-Enterprise无太多改进
支持通过扫描二维码,NFC,蓝牙等方式,添加IOT设备联网
增加256位密钥
2020年值得买的无线路由器(路由器避坑)
网线选购完全指南(知识科普,品牌推荐)
欢迎分享,转载请注明来源:内存溢出
评论列表(0条)