基于FPGA的多信道频率检测技术实现

基于FPGA的多信道频率检测技术实现,第1张

  在数字接收机的各种参数中,频率是最重要的参数之一,它能反映接收机的功能和用途、以及频谱宽度等重要指标。传统的顺序测频技术一般通过对接收机频带的扫描,对频域进行连续取样。该方法原理简单,技术成熟,但是,其频率截获概率与分辨力的矛盾难以解决,无法实现全概率信号截获。而多信道化的频率检测技术属于瞬时测频,其架构是采用多个频率窗口(多个信道彼此衔接相邻)来覆盖接收机的整个频段,这样,当信号进入任一个窗口时,该窗口的频率值即可被检测出。因此,该方法可解决频率截获概率与频率分辨力的矛盾,同时也为实现全概率频率捕获提供了一种参考方案。

  1 多信道模型

  当一个实信号经过A/D采样之后,再进行正交下变频处理,即可得到I、Q两路相位正交信号,它们所构成的是一个复信号。该复信号的信道化示意图如图1所示。

  基于FPGA的多信道频率检测技术实现,多信道化示意图(电子发烧友网),第2张

  图1所示的信道是一种相互交叠的信道,它们涵盖了整个零中频信号的频率范围。一般情况下,多信道往往采用数字滤波器组来实现,但该方法需要设计M(M为信道数)个中心频率不同,而其它性质完全相同的带通滤波器。这种结构设计过于复杂,同时还加大了后续信号处理的运算速度,对实时处理极为不利。而数字滤波器组的低通型实现方法则是先将每个通道乘以一变换因子,就相当于将实际信号搬移到零中频,然后再通过LPF得到该频率信号。该方法可对带通信号的频段进行信道化分离,但是带来的新问题是当LPF用FIR滤波器实现M个滤波运算时,将占用较大的硬件资源,而且系统工作效率较低。目前,该结构已被高效DFT多相滤波器组结构所代替。

  图2所示是一种具有普遍性的基于DFT多相滤波器组的信道化高效结构,从图2中可以看出,在滤波之前,先对数据进行D倍抽取可降低滤波过程的运算量,gn(m)是低通原型滤波器hLP(n)的多相分量,其阶数可减小到原来的1/D,因而DFT可以用FFT实现。事实上,在此结构中,系统的复杂度和数据速率大大降低,实时处理能力得到了提高。

  基于FPGA的多信道频率检测技术实现,于DFT多相滤波器组的信道化高效结构(电子发烧友网),第3张

  2 滤波器的设计及仿真

  低通型滤波器结构中的每个通道都是由原型低通滤波器乘以旋转因子形成的。根据要求,图3所示是由256阶原型低通滤波器形成的滤波器组及其信号输出仿真波形。该信号的有效带宽为300MHz,共分为32通道,每通道带宽为9.375MHz.如给此滤波器组送入频率?=28.1MHz的单频信号,那么,通过理论计算可知,信号应在第3号通道有输出。图3 (b)所示就是第2、3、4通道的输出仿真结果,可以看出,仅第3个通道有比较强的信号输出,这与理论上的计算结果是一致的。

  基于FPGA的多信道频率检测技术实现,多信道滤波器组及其信号输出仿真波形(电子发烧友网),第4张

欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/2500863.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2022-08-05
下一篇 2022-08-05

发表评论

登录后才能评论

评论列表(0条)

保存