求一份自动控制原理的课程设计,就是随便一个自动控制系统的具体设计,各位大侠帮下啊·

求一份自动控制原理的课程设计,就是随便一个自动控制系统的具体设计,各位大侠帮下啊·,第1张

摘 要
随着科学技术的不断的向前发展,人类社会的不断进步。自动化技术取得了巨大的进步,自动控制技术广泛应用于制造业、农业、交通、航空及航天等众多产业部门,极大的提高了社会劳动生产率,改善了人们的劳动条件,丰富和提高了人民的生活水平。当今的社会生活中,自动化装置无所不在,自动控制系统无所不在。因此我们有必要对一些典型、常见的控制系统进行设计或者是研究分析。
一个典型闭环控制系统的组成是很复杂的。通常都由给定系统输入量的给定元件、产生偏差信号的比较元件、对偏差信号进行放大的放大元件、直接对被控对象起作用的执行元件、对系统进行补偿的校正元件及检测被控对象的测量元件等典型环节组成。而控制系统设计则是根据生产工艺的要求确定完成工作的必要的组成控制系统的环节,确定环节的参数、确定控制方式、对所设计的系统进行仿真、校正使其符合设计要求。同时根据生产工艺对系统的稳、快、准等具体指标选择合适的控制元件。
原理分析
11 信号流图
信号流图是表示线性代数方程的示图。采用信号流图可以直接对代数方程组求解。在控制工程中,信号流图和结构图一样,可以用来表示系统的结构和变量传递过程中的数学关系。所以,信号流图也是控制系统的一种用图形表示的数学模型。由于它的符号简单,便于绘制,而且可以通过梅森公式直接求得系统的传递函数。因而特别适用于结构复杂的系统的分析。
信号流图可以根据微分方程绘制,也可以从系统结构图按照对应的关系得到。
任何线性方程都可以用信号流图表示,但含有微分或积分的线性方程,一般应通过拉氏变换,将微分方程或积分方程变换为s的代数方程后再画信号流图。绘制信号流图时,首先要对系统的每个变量指定一个节点,并按照系统中的变量的因果关系,从左到右顺序排列;然后,用表明支路增益的支路,根据数学方程式将各节点变量正确连接,便得到系统的信号流图。
在结构图中,由于传递的信号标记在信号线上,方框则是对变量进行变换或运算的算子。因此,从系统结构图绘制信号流图时,只需在结构图的信号线上用小圆圈标志出的传递信号,便得到节点;用标有传递函数的线段代替结构图中的方框,便得到支路,于是,结构图也就变换为相应的信号流图了。
12 传递函数
线性定常系统的传递函数,定义为零初始条件下,系统输出量的拉氏变换与输入量的拉氏变换之比。
结构图的等效变换和简化
由控制系统的结构图通过等效变换(或简化)可以方便地求取闭环系统的传递函数或系统输出量的响应。实际上,这个过程对应于由元部件运动方程消去中间变量求取系统传递函数的过程。
一个复杂的系统结构图,其方框间的连接必然是错综复杂的,但方框间的基本连接方式只有串联、并联和反馈连接三种。因此结构图简化的一般方法是移出引出点或比较点,交换比较点,进行方框运算将串联、并联和反馈连接的方框合并。在简化过程中应遵循变换前后关系保持等效的原则,具体而言,就是变换前后前向通路中传递函数的乘积应保持不变,回路中传递函数的乘积应保持不变。
串联方框的简化(等效)
传递函数分别为G1(s) 和G2(s) 的两个方框,若G1(s) 的输出量作为G2(s) 的输入量,则G1(s) 与G2(s) 称为串联连接,见图1 – 1 。
图1 – 1 串联方框的简化(等效)
132 并联方框的简化(等效)
传递函数分别为G1(s) 和G2(s) 的两个方框,如果他们有相同的输入量,而输出量等于两个方框输出量的代数和,则G1(s) 与G2(s) 称为并联连接,
见图1 – 2 。
图1 – 2 串联方框的简化(等效)
133反馈连接方框的简化(等效)
若传递函数分别为G1(s) 和G2(s) 的两个方框,如图1 – 3 形式连接,则称为反馈连接。“ + ”号为正反馈,表示输入信号与反馈信号相加;“ — ”则表示相减,是负反馈。
图1-3 反馈连接方框的简化(等效 )
Ф(s)表示闭环传递函数,负反馈时, Ф(s)的分母为1+回路传递函数,分子是前向通路传递函数。正反馈时, Ф(s)的分母为1-回路传递函数,分子为前向通路传递函数。单位负反馈时,
14稳定裕度
控制系统稳定与否是绝对稳定性的问题。而对一个稳定的系统而言,还存在着一个稳定的程度的问题。系统的稳定程度则是相对稳定的概念。相对稳定性与系统的瞬态响应指标有着密切的关系。在设计一个控制系统时,不仅要求它是绝对稳定的,而且还应保证系统具有一定的稳定程度,即具备适当的稳定性。只有这样,才能不致因建立数学模型和系统分析计算中的某些简化处理,或因系统参数变化而导致系统不稳定。
对于一个开环传递函数中没有虚轴右侧零、极点的最小相位系统而论,G K ( jω ) 曲线越靠近 (- 1,j 0)点,系统阶跃相应的震荡就越强烈,系统的相对稳定性就越差。因此,可用G K ( jω ) 曲线对(- 1,j 0)点的靠近程度来表示系统的相对稳定程度。通常,这种靠近程度是以相角裕度和幅值裕度来表示的。
141 相角裕度
设ωc 为系统的截止频率,A ( ωc ) = | G ( jωc ) H( jω c) | = 1 ,定义相角裕度为
γ =180° +∠G ( jωc ) H( jω c)
相角裕度γ的含义是,对于闭环稳定系统,如果系统开环相频特性再滞后γ度后,则系统将处于临界稳定状态。
142 幅值裕度
设ωx为系统的穿越频率 ,
φ( ωx ) = ∠ G ( jωx ) H( jω x ) = ( 2k + 1 ) π ; k = 0 , ± 1 , ± 2 ……定义幅值裕度为
h = 1 /|G(jωx)H(jωx)|
幅值裕度h的含义是,对于闭环稳定系统,如果系统开环幅频特性再增大h倍,则系统将处于临界稳定状态,复平面中γ和h的表示如图1-4 所示

图1-4 相角裕度和幅值裕度
15 线性系统的校正方法
基于一个控制系统可视为由控制器和被控对象两大部分组成,当被控对象确定后,对系统的设计实际上归结为对控制器的设计,这项工作称为对控制系统的校正。按照校正系统在系统中的连接方式,控制系统校正方式可分为串联校正、反馈校正、前馈校正和复合校正。
151 串联校正
串联校正装置一般接在系统误差测量点之后和放大器之间,串接于系统前向通路之中,如图1 – 5 。串联校正装置有源参数可调整。

图1 – 5 串联校正
152 反馈校正
反馈校正装着接在系统反馈通路之中。如图1 – 6 。反馈校正不需要放大器,可消除系统原有部分参数波动对系统性能的影响。

图1 – 6 反馈校正
153 前馈校正
前馈校正又称顺馈校正,是在系统主反馈回路之外采用的校正方式。前馈校正装置接在系统给定值之后及主反馈作用点之前的前向通路上,如图1 – 7 所示,这种校正方式的作用相当于给定值信号进行整形或滤波后,再送入反馈系统;另一种前馈校正装置接在系统可测扰动作用点与误差测量点之间,对扰动信号进行直接或间接测量,并经变换后接入系统,形成一条附加的对扰动影响进行补偿的通道,如图1 – 8 所示。

图1 – 7 前馈校正1 图1 – 8 前馈校正2
154 复合校正
复合校正方式是在反馈控制回路中,加入前馈校正通路,形成一个有机整体,如图1 – 9 所示。

图1 – 9 复合校正
16 期望对数频率特性设计方法
期望特性设计方法是在对数频率特性上进行的,设计的关键是根据性能指标绘制出所期望的对数幅频特性。而常用的期望对数频率特性又有二阶期望特性、三阶期望特性及四阶期望特性之分。
161 基本概念
系统经串联校正后的结构图如图所示。其中G0(s)是系统固有部分的传递函数,Gc(s)是串联校正装置的传递函数;显然,校正后的系统开环传递函数为
G(s) = Gc(s) G0(s)
取频率特性,有
G(jω) = Gc(jω) G0(jω)
对上式两边取对数幅频特性,则
L(ω) =Lc(ω) + L0(ω)
式中,L0(ω)为系统固有部分的对数幅频特性;
Lc(ω)为串联校正装置的对数幅频特性;
L(ω)为系统校正后的所期望得到的对数幅频特性,称为期望对数幅频特性。
上式表明:一旦绘制出期望对数幅频特性L(ω),将它与固有特性L0(ω)相减,即可获得校正装置的对数幅频特性Lc(ω)。在最小相位系统中,根据Lc(ω)的形状即可写出校正装置的传递函数,进而用适当的网络加以实现,这就是期望频率特性设计法的大致过程。
162 典型的期望对数频率特性
通常用到的典型期望对数频率特性有如下几种;
1621 二阶期望特性
校正后系统成为典型的二阶系统,又称为 Ⅰ 型二阶系统,其开环传递函数为
G(s) = Gc(s) G0(s) = K /s (Ts +1 ) = ωn2 / s ( s + 2§ωn ) = ( ωn/( 2§))/(s(1/(2§ωn) s+1))
式中,T = 1 / 2§ωn , 为时间常数;K = ωn/ 2§ ,为开环传递函数。
相应的频率特性表达式是
G ( jω ) = ( ωn/( 2§))/(jω(1/(2§ωn) jω+1))
按上式给出的二阶期望对数频率特性如图 1 – 10 所示,其截止频率
ωc = K =ωn/ 2§
转折频率ω2 = 1 / T = 2§ωn 。 两者之比为
ω2 /ωc = 4 § 2
工程上常以 § = 0707 时的二阶期望特性作为二阶工程最佳特性。此时,二阶系统的各项性能指标为
σ % = 43 %
ts = 4144 T
由渐进特性 :ωc =ω2 / 2 , γ = 634° ;
由准确特性 :ω2 = 0455ω2 ,γ = 6553°

图 1 – 10 二阶期望对数频率特性
1622 三阶期望特性
校正后系统成为三阶系统,又称为 Ⅱ型三阶系统,其开环传递函数为
G(s)= K ( T1 s + 1 ) / s2 (T2 s + 1 )
式中,1 / T1 <√K < 1 / T2 。相应的频率特性表达式为
G ( jω ) = K ( jT1ω + 1 ) / (jω)2 (jT2ω + 1 )
三阶期望对数幅频特性如图 1 – 11 所示。其中 ω 1 = 1 / T1 ,ω2 =1 / T2。
由于三阶期望特性为Ⅱ型系统,故稳态速度误差系数Kv = ∞ ,而加速度误差系数Ka = K。
三阶期望特性的瞬态性能和截止频率ωc 有关,又和中频段的宽度系数h有关。
h = ω2 /ω1 = T1 / T2
在h值一定的情况下,一般可按下列关系确定转折频率ω1和ω2:
ω1 = 2ωc /h+1 , ω2 = 2hωc /h+1

图 1 – 11 三阶期望对数幅频特性
1623 四阶期望特性
校正后系统成为三阶系统,又称为 Ⅱ型三阶系统,其开环传递函数为
G(s)= K ( T2 s + 1 ) / s (T1 s + 1 ) (T3 s + 1 ) (T4 s + 1 )
相应的频率特性表达式为
G(jω)= K (jT2 ω + 1 ) / jω(jT1 ω + 1 ) (jT3 ω + 1 ) (jT4 ω + 1 )
对数幅频特性如图 1 – 12 所示。
图 1 – 12 对数幅频特性
其中截止频率ωc 、中频段宽度h可由要求的调节时间ts 和最大起调量σ% 确定,即
ωc ≥ (6 ~ 8)/ts h ≥ σ+64 / σ- 16
近似确定ω2 和ω3 如下:
ω2 = 2ωc /h+1 , ω3 = 2hωc /h+1
四阶期望对数幅频特性由若干段组成,各段特性的斜率依次为-20dB/dec、-40dB/dec、-20dB/dec、-40dB/dec、-60dB/dec。若以-20dB/dec作为1个斜率单位,则-40dB/dec可用2表示,-60dB/dec可用3表示。于是,各段的斜率依次为1、2、1、2、3,这就是工程上常见的所谓1-2-1-2-3型系统。其中:
低频段:斜率为-20dB/dec,其高度由开环传递函数决定。
中频段:斜率为-20dB/dec,使系统具有较好的相对稳定性。
低中频连接段、中高频连接段和高频段:这些对系统的性能不会产生终于影响。因此,在绘制时,为使校正装置易于实现,应尽可能考虑校正前原系统的特性。也就是说,在绘制期望特性曲线时,应使这些频段尽可能等于或平行于原系统的相应频段,连转折频率也应尽可能取未校正系统相应的数值。
具体分析及计算过程
21 画信号流图
信号流图如图2 – 1 所示

G1 (s) = 4 ,G2 (s) = 10 ,
G3 (s) = 20 / (0025 s+1) , G4 (s) = 25 / s(01 s+1)
图2 – 1 小功率随动系统信号流图
22 求闭环传递函数
系统的开环传递函数为
G(s) = G1 (s) G2 (s) G3 (s) G4 (s)
= 200 / s (0025 s + 1 ) (01 s + 1)
= 200 / ( 00025 s3 + 0125 s2 + s )
则系统的闭环传递函数为
Ф = 200 / ( 00025 s3 + 0125 s2 + s + 200 )
求开环系统的截至频率
G(s) = 200 / s (0025 s + 1 ) (01 s + 1)
相应的频率特性表达式为
G(jω) = 200 / jω (0025 jω + 1 ) (01 jω + 1)
由|G(jω)|= 1 可得截止频率 ωc = 38 s-1
求相角裕度
将ωc = 38 s-1带入G(jω),可得
相角裕度γ= 180°+(0°- 90°- arctan1/095- arctan1/38)=-283°
求幅值裕度
令G(jω)的虚部等于0可得穿越频率ωx=20 s-1
此时,G(jω)=A(ω)=00833,则幅值裕度h=1/ A(ω)=12
设计串联校正装置
绘制未校正系统的对数幅频特性,程序如下
num=200;
den=[00025,0125,1,0];
sys=tf(num,den);
[mag,phase,w]=bode(num,den);
[gm,pm,wcg,wcp]=margin(mag,phase,w);
margin(sys)
未校正系统的对数幅频特性如图2 – 2 所示,其低频特性已满足期望特性要求

图2 – 2 未校正系统的对数幅频特性
计算期望特性中频段的参数:
ωc ≥ (6 ~ 8)/ts = (6 ~ 8)/ 05 = 12 ~ 16(rad s-1)
h ≥ σ+64 / σ- 16 =25 + 64 / 25- 16 = 989
取ωc = 20 rad s-1 ,h = 10。
计算ω2 ,ω3 :
ω2 = 2ωc /h+1=≅ 2ωc / h = 2×20 / 10 = 4
ω3 = 2hωc / h + 1 ≅ 2 × 20 = 40
由此可画出期望特性的中频段,如图2 – 3所示。
根据期望对数频率特性设计方法,可以画出期望对数幅频特性曲线,如图2 – 3。
图2 – 3 期望对数幅频特性曲线
将L ( ω )减去L 0( ω )(纵坐标相减)即得L c( ω ),L c( ω )即为系统中所串进的校正装置的对数幅频特性,如图2 – 4 所示。
图2 – 4 校正装置的对数幅频特性
根据其形状特点,可写出校正装置的传递函数为
Gc(s) = ( 025s + 1 ) ( 01s + 1 ) / ( 25s + 1 ) ( 001s + 1 )
要获得上式所描述的传递函数,既可用无源校正网络实现,又可用有源校正网络实现。
采用无源滞后------超前网络
无源滞后------超前网络如图2 – 5

图2 – 5 无源滞后------超前网络
其传递函数Gc(s)=(( T1 s + 1 ) ( T2 s + 1 ))/(( T1 s / β + 1 ) ( βT2s + 1 ))
比较上式与校正装置的传递函数可得
T2 s = R2 C2 = 025 , βT2 = 25
T1 s = R1 C1 = 01 , T1 / β = 001
如选C1 =033μF,C2=5μF,则可算得
R1=01/033×10-6=3000kΩ
R2=025/5×10-6=50 kΩ
系统校正后的结构图如图2 – 6 所示
图2 – 6 系统校正后的结构图
采用有源校正网络
由于运算放大器组成的有源校正网络同时兼有校正和放大作用,故图2 – 7 中的电压放大和串联校正两个环节可以合并,且由单一的有源网络实现。如图2 – 7 所示的网络中,当R5≫R3时,导出的传递函数为
G ( s ) = - Z2 ( Z2 + Z4 ) / Z1 Z4 )
式中,
Z 1 = R1 ;Z2 = R 5 + R 2 / R 2 C 1 s + R2
Z 3 = R3 ;Z4 = R 4 + 1/ C 2 s
再经一级倒相后,网络的传递函数可表示成
G(s)=(R2+R5)/R1 (R2R5/(R2+R5) C1s+1)/(R2C1s+1) ((R3+R4)C2s+1)/(R4C2s+1)

图2 – 7 有源校正网络
电压放大与校正环节合并后的传递函数为
10 Gc(s)=10×( 025s + 1 ) ( 01s + 1 ) / ( 25s + 1 ) ( 001s + 1 )
比较以上两式,并选C1=10μF, C2=20μF,则可求得校正网络的参数如下:
R 2 C 1=25,故R 2=250kΩ
R 4 C 2=001,故R 4=500kΩ
(R 3+ R 4)C2=01, 故R 3=45kΩ
R2R5/(R2+R5) C1= 025,故R 5=28kΩ
(R2+R5)/R1=10,故R 1=28kΩ
取R 0=R 1=28kΩ。则系统校正后的结构图如图2 – 8 所示。
图2 – 8 系统校正后的结构图
3绘制校正前后系统的bode图
31 绘制未校正系统的对数幅频特性
未校正系统的对数幅频特性如图2 – 2。程序如下
num=200;
den=[00025,0125,1,0];
sys=tf(num,den);
[mag,phase,w]=bode(num,den);
[gm,pm,wcg,wcp]=margin(mag,phase,w);
margin(sys)
32 绘制校正系统的对数幅频特性
校正系统的对数幅频特性,如图2 – 3 。程序如下
num=[0025,035,1];
den=[0025,251,1];
sys=tf(num,den);
[mag,phase,w]=bode(num,den);
[gm,pm,wcg,wcp]=margin(mag,phase,w);
margin(sys)
33 绘制校正后系统的对数幅频特性
校正后系统的对数幅频特性如图2 – 4 。程序如下:
num=[50,200];
den=[0000625,008775,2535,1,0];
sys=tf(num,den);
[mag,phase,w]=bode(num,den);
[gm,pm,wcg,wcp]=margin(mag,phase,w);
margin(sys)
总结
课程设计不仅是对前面所学知识的一种检验,而且也是对自己能力的一种提高。通过这次课程设计使我明白了自己原来知识还比较欠缺。自己要学习的东西还太多,以前老是觉得自己什么东西都会,什么东西都懂,有点眼高手低。通过这次课程设计,我才明白学习是一个长期积累的过程,在以后的工作、生活中都应该不断的学习,努力提高自己知识和综合素质。
在设计过程中,我通过查阅大量有关资料,与同学交流经验和自学,并向老师请教等方式,使自己学到了不少知识,也经历了不少艰辛,但收获同样巨大。在整个设计中我懂得了许多东西,也培养了我独立工作的能力,树立了对自己工作能力的信心,相信会对今后的学习工作生活有非常重要的影响。而且大大提高了动手的能力,使我充分体会到了在创造过程中探索的艰难和成功时的喜悦。虽然这个设计做的也不太好,但是在设计过程中所学到的东西是这次课程设计的最大收获和财富,使我终身受益。

智慧物流是以物流互联网和物流大数据为依托,通过协同共享创新模式与人工智能先进技术,重塑产业分工,再造产业结构,转变产业发展方式的新生态。具体到我国民航的产业升级与智慧化发展,早在2018年2月,民航总局就和铁路总公司签署了《推进空铁联运战略合作协议》,标志着建立起了空铁跨运输方式联合的协调和沟通机制。当年5月,民航总局印发了《民航局关于促进航空物流业发展的指导意见》(民航发〔2018〕48号),从业层面对航空货运与物流业的融合进行了战略规划。其中,机场货站融入智慧物流体系在国民经济进行供给侧改革的大背景下,以连接升级、数据升级、模式升级、体验升级、智能升级为主要特征进行智慧物流建设,深刻改变着传统航空货运物流业的面貌。

在我国航空业国有企业混改的大背景下,《民航局关于促进航空物流业发展的指导意见》(民航发〔2018〕48号)提出了建立公共信息服务平台的规划。机场货运要积极参与公共信息服务平台建设,应用统一条码、射频识别等物联网技术,在行政力量和资本力量的双重推动下,打破条块化、碎片化的藩篱,连点成线、织线结网,搭建起全国联网的公共信息服务平台。通过与航空公司、货运代理人、快递企业、海关、检疫等单位的信息互联互通,促进了航空物流的组织化和集约化。

进入“十四五”时期后,政策层面对民航行业向智慧化的引导进一步明确。首先,“十四五”时期民航确定 “一二三三四”总体工作思路中的“四”——开拓四个新局面,其中明确指出“十四五”期间智慧民航建设要有新突破,这是战略目标层面对智慧化的要求。另外,2020年底,民航总局出台了《中国民用航空局关于推动新型基础设施建设促进民航高质量发展的实施意见》(简称“《实施意见》”)及《中国民用航空局关于推进新型基础设施建设五年行动方案》(简称“《五年行动方案》”),旨在积极推动行业数字化、智能化、智慧化转型升级,促进民航基础设施高质量发展。两项指导政策,其中明确提出了“2035年实现物流一张单的发展目标。力争到2025年数字化转型取得阶段性成果。”中国建筑科学研究院有限公司航空物流规划设计研究所李颖总工程师认为这些行业的政策,对于规划设计工作者包括各个建设单位的指导意义是很强的,“政策引导我们在工作中就着力提高货运设施的自动化水平,为物流设备、设施、和行业监管等全方位的智能化、智慧化发展创造基础条件。今年局方已经推动了一批智慧化工程的试点项目,比如湖北国际物流机场的少人化货运机坪;深圳机场航空集中器CT安检机应用项目;还有郑州机场航空电子货运项目等。这些都是民航物流方面智慧化发展的具体实例。”

民航机场规划设计研究总院物流所所长刘新力先生认为:航空物流业以打造“互联网+”高效物流,以Airport30智慧型机场建设为重要目标,正在推动机场航空物流向新基建和数字化方面转型:在硬件方面应加快建设5G通信、计算机网络设备等信息技术投入,软件方面,以大数据、云计算、人工智能为抓手,全力打造现代航空物流全产业链体系。刘新力认为,新建的大型机场在货运站或货运机场在物流设备选择上会以人工智能、灵活柔性为原则,会考虑应用无人叉车、无人搬运车、AGV等智能设备,以满足未来较长时间的使用要求。

李颖谈到,在基础设施和物流设备选择上,不论综合型还是专业型货运机场,有一个共同的特点就是功能需求日趋多元化,对功能空间的灵活变化和系统柔性的要求越来越高。这给航空物流园区和空港物流系统的规划建设带来了新的挑战。要求根据机场(及运营方)的特点去分析和研判基础设施及设备系统的现实功能需求和潜在功能需求,并为潜在功能需求的实现预留条件和可能性。

在谈到航空机场货运系统建设时,很多专家都谈到了无人化的趋势,业内称之为“无人化货运机坪”。刘新力所长谈到:随着信息化、数字化、自动化等新兴技术的快速发展,航空货运物流智能化、精细化水平明显提高。一方面,无人机技术、物联网、大数据、云计算、人工智能、北斗导航等先进技术普及运用,进一步推动了物流业服务模式变革,降低了企业运营成本,提升服务网络的智能化和自动化水平。另一方面,无人驾驶技术在全球范围内发展迅速,无人自动驾驶技术正为智慧机场建设和空侧无人化提供新方向。香港机场自2019年12月30日起开始在机场飞行区实际 *** 作环境下试验运行无人驾驶拖车运输航空货物和旅客行李。经过一年多的运作,证实无人驾驶拖车的运作可靠,也比人工驾驶拖车更为安全及顺畅。无人驾驶拖车的驾驶舱内没有司机,也没有乘客或安全员,行驶速度为每小时20公里。车辆搭载多种传感器,能按设定的路线安全行驶,并准确检测障碍物,可靠性高,确保安全及稳定性。2020年全球新冠疫情侵袭,无人驾驶拖车由于技术上实现了完全无人的 *** 作,在防疫期间仍能够常态化展开运作。香港机场将规模化采用无人驾驶拖车,提升运营效率及推动机场运作安全智能化。

对于机场物流系统建设无人化的发展趋势,他还介绍了新加坡樟宜机场的案例。该机场正十分积极地追求全面自动化的目标:它建造了一个完整的航站楼来帮助测试未来的机场机器人。SATS(新加坡机场航站服务公司)正在测试一种远程控制的交通工具,这种交通工具可以在10分钟内将行李从飞机上卸下,并转移到行李处理区域。该公司还在测试使用一辆自动驾驶电动 汽车 ,用它来运送空运单据。SATS正在利用光探测和测距技术来绘制路线,将高承载200公斤食物的手推车运送到休息室。此外,刘新力还提到了智慧机坪在机场货运中的应用。考虑到一般机场货机坪具备相对独立的物理隔离条件,可以在该区域实行全自动的货物转运,包括从货机卸货、到港运输、进入航空货站、离港运输、货机装机等全过程,实行全自动无人化工作流程。通过在机坪采用全自动技术,提高机场货运区的运行时效,节约人力成本,加快场区内货物周转效率。在货运站内部也可以采用AGV、RGV等智能设备的应用,可以采用路径隔离、时间隔离等手段做到站房内部的车辆无人化。根据 科技 发展和适度超前的规划原则,航空货运站设计时考虑打造高效集成的航空物流作业环境,在设施设备上考虑应用四向穿梭车、AGV 等散货处理系统等智能设备,以提高货运设备的整体智能化程度。

机场货站是机场陆侧设施的重要组成部分,是航空物流最重要的地面 *** 作节点。据统计,货邮在机场货站的处理时间占到航空物流运输总时间的80%左右。因此,航空物流系统智慧化升级,机场货站的升级发展是重要项目之一。由于智慧机场货站建设涉及土地、税收、政策、资本、技术、组织机构等一系列复杂的问题,因此有业内专家提出,其信息管理系统要进行全面升级,使其具有有效整合托运书、收货查验、过磅称重、录入货运单、货邮入库、订舱、吨控、运价计算、货邮出库、收款等各 *** 作环节的能力,以及具备综合报表、票据保管、客户关系、基础数据等信息管理功能。相关信息系统建设需以模块化思路建设机场货站的信息管理系统,实现机场货站与安检、配载、机坪装卸等部门的信息互联互通。以智能减少人工、以信息促进优化,通过完善信息管理系统实现机场货站的流程再造和提质增效。

对于机场货站中自动化物流设备智能化发展,机场货站要依据现实的业务规模和仓储需求来建设符合自身特点的硬件设施,不应过于追求技术的先进性。比较适合的方向有出港的自动分拣机、集装板组板机,进港的自动分拣机、传送带,仓储的立体货架等。同时,要优化安检技术与流程,实现与货运代理人、快递企业之间整板、整箱的收运和交付。要发挥大数据的作用,理清出港流向、进港收货人等数据信息,以便调整作业模式和营销策略。例如,让进港量较大的代理人优先分拣等,可以大大地降低进港分拣的人力耗费;再如,及时有效的出港数据分析,有利于承运人、货运代理人及时调整运价水平和路线规划。

对于智能化设备和技术在航空物流领域的应用,李颖认为还存在一些挑战,她谈到:今天在电商仓配和供应链物流领域,智能化、无人化技术的应用远比在航空物流领域更为广泛和普遍。但是这些技术在向航空物流领域渗透的过程中遇到了一些困难。这其中可能有一个比较重要的原因是航空物流在处理环节对设备的要求与非航空的物流领域相比存在巨大的差异。航空物流处理的货物单元偏重且体积偏大,一般普货以托盘为最小 *** 作单元,托重200 800kg不等。这样较重的托盘在航空货站整体的作业流程中需要经过至少2次的拣选动作;而航空物流 *** 作中的拣选也与常规仓不同——必须按单拣选且顺序拣选。航空物流的整体作业流程中还存在着一些类似的非常规 *** 作,使得在常规的物流作业场景下开发的物流技术和解决方案在航空领域遭遇“水土不服”。

航空物流枢纽往往是国际贸易的重要节点。随着跨境电商等贸易方式风行,多式联运等物流组织方式的大发展,使得航空物流业的建设和管理运作升级发展的需求更加迫切。大力发展多式联运包括空空、空陆、空铁、空水、空海等多种物流联运方式,已经成为航空物流枢纽建设升级发展的重要方式。因此,如今很多机场和当地政府结合当地综合交通条件,产业发展、土地情况等前提做好货运区、临空经济区、综合交通的专项规划,加快以航空货运枢纽为核心的多式联运基础设施的规划建设,适当超前布局、因地制宜、分步实施;以战略的眼光谋划布局货运专用的高速公路、货运高铁进入机场,便于上述多种形式的多式联运的实现。

对于具体建设项目,刘新力介绍到:目前,我国规划布局了2个以航空货运为主体的运输机场——鄂州机场与嘉兴机场,在建设时都充分考虑了铁路和公路转运的需求,在设备选择整体上采用成熟产品,以能高效、经济处理包裹、小件包、扁平件、非扁平件、信封、异形件、超大超重件等不同品类的产品为原则;同时也将在部分设备上引入新新设备,降低员工的工作强度、提升系统运作效率。除了专用的货运机场,新建的大型综合机场为了满足客户的需求,在货运站空间布局方面也都有了优化的设计,以保障航空运输方式快速和可靠。新建的航空货运站空间布局都具备良好的空侧资源、完善的综合交通条件、齐备的二级设施、高效的通关条件、齐全的海关口岸等;并为扩展产业链相关货源、承接更多类型的航空货物来考虑空间布局,以适应多变的航空物流市场。

总的来说,我国航空物流领域智慧化发展的前景值得期待,航空货运的传统经营模式要跟上时代的脚步和节奏,机场货站更是要通过智慧化的升级发展,发挥平台和节点的重要作用。时代潮流,浩浩汤汤,在智慧化物流发展的过程中,建设者必须以创新谋求发展、以开放拥抱智慧,才能共同促进包括航空物流的物流行业融入智慧化发展的新时代。

同一栋楼的航空障碍灯同步可以通过航空障碍灯控制器(ZH-879AC/T)或是航空障碍灯主副通用型灯具(ZH-800AM/RF)和GPS航空障碍灯(ZH-800AM/RP)的方式达到同步闪烁的目的。
同一栋楼的同步控制方式基本采用航空障碍灯控制器控制的方式或是主副灯控制的方式来控制,这种控制方式适合于同一栋楼走线方便,且相对而言成本较低。
华广发航空障碍灯同步方式亦如此。华广发GPS航空障碍灯同步闪烁的方式适用于楼宇建筑群,因为楼宇之间连线成本大且麻烦,采用GPS的方式是达到同步闪烁目的最简便的一种方式。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10404025.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-08
下一篇 2023-05-08

发表评论

登录后才能评论

评论列表(0条)

保存