现在经常听说什么数字化,企业如何数字化转型?

现在经常听说什么数字化,企业如何数字化转型?,第1张

数字化是在传统信息化基础上,通过万物互联的核心思路,来解决了物和信息在时间和空间上的完整融合,形成一个整体。应用物联网,5G等技术将物和物本身连接并自动产生信息。在万物互联下,信息的产生不再是只能够通过人工输入信息,而是自动产生,自动计算,自动流转。

在数字化建设的初期,企业只具备一个个的“孤岛”系统,各业务系统间的数据没有任何集成关系。此时,财务管理最需要明确的就是一套科学合理的会计科目核算主数据,如科目体系是否足够清晰,核算维度是否足够支撑现有财务分析,科目体系是否具备灵活的扩展性,能否适应公司战略发展方向的新业务板块等。

数字化财务是借助先进的数字信息技术,从财务流程、业务、组织三个方面予以重构,以期实现财务基础职能的标准化与智能化,提升财务工作效率和信息质量,推动财务人员从核算型向战略管理型转变。规范业务管理,强化过程控制,提升业务管控水平以促进业务发展,实现服务业务经营、精细协同管理、辅助决策支持和全面风险评估,最终实现推动公司数字化转型升级。打造具备全景化记录、实时化洞察、主动性防御,最终创造价值的等能力。

围绕智能财务建设蓝图,数据可视化技术搭建了多套能够支撑公司现阶段经营战略、“小而美”的金融可视化大屏,消除数据应用间的各类系统“壁垒”,实现数据间的互相融通,为业务财务一体化融合提供了坚实的基础。

基于可视化视角的金融资产管理,目的是把产、供、销和人、物、财等信息进行高度集中。屏幕中展示企业各分公司的分布地、资金总额、运营金额、可用备付金、企业数量等,并选择以世界地图与中国地图的形式为主体,宏观展示企业在各国的业务开展情况,全面展示企业在中国及世界范围内的前瞻布控。

在过去的几十年里,资金管理系统侧重点为可控性,是通过一系列繁琐的流程和审批来进行支付类目管理。支付类目管理可视化以资金流为主线,通过地图上的信息标识,统计出各公司所支付金额和总量,将企业现有业务项目像(施工进度节点、融资计划、职工薪资等)、大额资金流变动、支付量统计进行一体化呈现。

由垂直归总转向扁平式归总,对存在资金缺口的分公司进行预警提示。既方便问题原因追溯查询,又能提高管理者的可预见性,降低企业的支付风险。通过数据可视化去督促各部门进行计划资金支付,提高企业精细化管理水平,加大对支付风险的分析和预测,高效决策资金输出的合理性,从根本上打破信息壁垒,杜绝资产无效流失

运用丰富的图表和动画效果对电子账户数据进行不同维度的数据解释,理性整合各银行的电子账户总数统计、入网率、分公司开销等情况。精简的数据更方便财务人员查询管理公司账户。

可从日余额、年均资产、月日均、贴现、自营贷款、委托贷款六个维度合并分析企业存款的规模走势,点击信息的对应交互位置,d出对应明细指标。并配合展示资金投入、收益、回款等流入流出的各项指标,根据投资存款做出精准的评估与排名,提升企业资金回报率。

信贷管理是一项综合性、系列化的工作,可视化监控可根据自贷金额、委贷金额、贴现统计来生成企业业务结构趋势图,每月累计、当月发生、本月日均、本年日均数据信息一目了然。

借助税务信息化系统管理平台的可视化表达和空间分析,可以有效对各地的税务系统建设、应用分类、硬件及数据库情况等进行可视化信息管理,将复杂繁多的税收业务变得可视化、生动化和地理分布的直观化,构建项目管理“一张网”,提高税务行业工作效率。

可视化大屏梳理了各主要城市税务信息化系统建设的情况,并按照软件分类、资金投入、安全等级、项目数量等模块进行展示。多图表面板一览税务系统建设的宏观方向和细节,实现项目管理“一张网”。

除梳理整体的税务信息化系统建设情况外,Hightopo还对主要城市的涉税数据进行整体监测和汇总。从宏观维度进行分析统计,从“面”上呈现税务数据反映的我国经济和产业面貌,从多维度、多视角显示税务数据的统计与税务分析结果,以动态精准数据驱动税务管理。通过环状分析图等丰富的图表形式,展示税务数据的产业分析、退税排名、月度生产经营效应及对应的各区经营效益等内容。

借助新平台、新理念、新队伍、新知识结构,全力推动智能财务系统建设,随着新兴科技的发展,税务信息化行业将朝着智能化、运维管理平台一体化等方向不断发展,未来的税务信息化管理平台将功能更强大、运行更顺畅、内容更完备。

可以做移动应用软件开发工程师,包括常见的APP开发工程师,另一方面,伴随着万物互联概念的诞生,包扩智能家居等产业的蓬勃发展也会催生许多移动端的软件的诞生,所以移动软件开发工程师应该是就业的主力。

IT属于理工专业,文科生是不能报考的,但是可以学。

计算机学科的特色主要体现在:理论性强,实践性强,发展迅速按一级学科培养基础扎实的宽口径人才,体现在重视数学、逻辑、数据结构、算法、电子设计、计算机体系结构和系统软件等方面的理论基础和专业技术基础,前两年半注重自然科学基础课程和专业基础课程,拓宽面向。

后一年半主要是专业课程的设置,增加可选性、多样性、灵活性和方向性,突出学科方向特色,体现最新技术发展动向。

扩展资料:

一、培养目标

本专业毕业生应获得以下几个方面的知识和能力:

1、掌握电子技术和计算机组成与体系结构的基本原理、分析方法和实验技能,能从事计算机硬件系统开发与设计。

2、掌握程序设计语言、算法与数据结构、 *** 作系统以及软件设计方法和工程的基本理论、基本知识与基本技能,具有较强的程序设计能力,能从事系统软件和大型应用软件的开发与研制。

3、掌握并行处理、分布式系统、网络与通信、多媒体信息处理、计算机安全、图形图象处理以及计算机辅助设计等方面的基本理论、分析方法和工程实践技能,具有计算机应用和开发的能力。

4、掌握计算机科学的基本理论,具有从事计算机科学研究的坚实基础。

二、就业方向

1、WEB应用程序设计专业

毕业后能够从事网站应用程序开发、网站维护、网页制作、软件生产企业编码、软件测试、系统支持、软件销售、数据库管理与应用、非IT企事业单位信息化。

2、可视化程序设计专业

毕业后能够从事软件企业桌面应用开发、软件生产企业编码、软件测试、系统支持、软件销售、数据库管理与应用开发等工作。

3、数据库管理专业

毕业后能够从事企、事业单位数据库管理、软件开发、专业数据库应用设计与开发、数据库的应用与开发、信息管理系统开发、企、事业单位网络管理、软件销售等工作。

参考资料来源:百度百科-计算机专业

第四次工业革命以及随之而来的数字化转型浪潮已在全球范围内席卷而来。推动互联网、大数据、人工智能和实体经济深度融合,发展数字经济成为落实国家重大战略的关键力量。“互联网+”大背景下,大数据、物联网、人工智能等新技术应用成为 社会 变革的驱动力,越来越多的企业制定了数字化转型战略。

企业数字化转型是指通过构建数字化运营体系实现企业级变革,包含对企业IT架构的升级以及管理体系的重塑。

IT架构升级指企业信息系统的升级与优化。 企业信息系统建设升级一般会经历电子化、信息化、数字化三个阶段。电子化为初级阶段,即企业构建单一部门应用的信息系统,将线下事务向线上迁移,运营数据“从无到有”;信息化为稳定过渡阶段,以各部门信息系统集成支撑业务集中化、标准化、规范化,运营数据“从有到通”;数字化为高级阶段,以企业数据驱动业务精准重塑,依托人工智能、大数据、中台建设等技术支撑,助力企业发掘运营管理、生存发展的最优解决方案,发挥“数据资产”价值。

管理体系重塑指企业经营管理智能化。 构建以“数据贯通与分享”为基础的管理体系,以适宜的IT架构基础为依托,实现企业运营数据自动获取并广泛链接,基于数据理解业务实质,洞察价值创造过程,开展业务决策和敏捷行动,驱动业务创新和精益管理,实现管理“蜕变”。

数字化转型依托云计算、大数据及机器学习等前沿技术手段,以文化先行、组织赋能、人才支撑和机制牵引为助推力量,协助企业克服内外部发展阻力,促进企业管理提升。数字化转型后的企业一般呈现四项典型特征:

企业实现高效管理离不开系统和数据。当前,大多数企业已经通过内部信息系统建设实现了“信息化”。这些信息系统普遍为套装软件,以流程为中心,根据预先确定的流程处理场景,建立紧耦合的数据模型,规范数据采集、规则控制和业务处理,最终形成信息输出。

在万物互联的数字化时代,企业对高效决策、精益价值、灵活响应的需求,和传统信息系统模块化、流程化的支撑能力间形成了冲突;同时在长期经营管理的过程中,跨部门系统应用数据标准和口径的不统一导致的信息协同障碍积累严重。

企业所面临的结构性“困局”日益显著,主要体现在以下几个方面:

数字化转型正是为了破局和迎战,实现现实世界与数字世界的融合、互动,在数字世界中模拟推演,促进战略落地,优化经营决策。零散、无关联的数据并不能称为资产,为深度释放数据资产价值,重构企业级数据标准是必经之路。企业业务部门和技术部门需要共建共享,通过梳理数据逻辑、构建数据地图、明确数据标准、打通数据链路、开展数据洞察和数据应用。以企业数据为中心,将功能应用服务化、组件化,支撑灵活变化的业务需求。基于数据融合构建价值网络,共创价值增长空间。

企业级数据地图

数字化转型是企业级的整合和变革。数据作为转型的驱动能量,若仅服务于部分职能,势必无法发挥其全部的价值,数据需要贯通,数据标准也必须是企业内部通用的。企业应以业务脉络为基础,全方位全面梳理业务逻辑及数据关系,对现有流程、制度、系统进行优化改造,形成稳定的数据关系内核,引导系统架构优化,提高数据使用效率、提升数据资产价值,依托数据快速输出,实现管理赋能。

在企业级数据标准重构实践中,可遵循三个步骤,以统一数据标准为起点,逐渐完善前端业务流程改造,从源端产生语义统一、逻辑清晰、高标准高质量的数据,构建坚实的数据资产基础。

01 建立企业级数据标准,形成跨部门“共同语言”

围绕企业业务主线,梳理业务场景,对各类信息和表单元素进行解构和提炼,这是构建企业级数据标准的基础。在统一数据标准的过程中,可以以财务信息为起点,通过单笔财务记录向前追溯对应业务场景;以产品类型和产品生产全过程为经络,明确业务逻辑,对经济业务场景进行元素化解构;从管理对象、交易记录、业务标签三个层面对数据元素进行规范表述,形成清晰的数据关系。

在管理对象层面,对单专业及跨专业管理对象进行唯一识别。 对于单专业管理对象,围绕企业经济事项全场景,统一每个专业视角下最小单元的颗粒度和业务属性描述需求,围绕管理对象能够进行自由组合,支撑多视角融合。对于跨专业管理对象,针对企业组织、客户、资产设备、项目、业务伙伴等,围绕跨专业共用的管理对象和业务属性描述需求,梳理数据信息,建立统一通用的数据标准。

从管理对象层面对数据元素进行精确表述

在交易记录层面,规范交易信息传递过程和路径。 按照业务价值链梳理交易记录规则,规范各类单据的信息字段,建立跨专业共同遵循的流程管理规范,围绕业务交易,固化数据连接关系。例如,建立企业内合同、订单、发票信息的同源联动,建立完整的采集源头,部署清晰的数据录入标准,对各类单据的完整性进行强控。在此基础上,明确业务 *** 作与线上记录规则,对数据源头进行动态更新,实现各类数据信息的规范传递。最终可以精准匹配管理对象,以完整的单据链和信息链对业务管理流程进行精准的数字重现。

在业务标签层面,建立规范统一的标签体系。 构建业务标签的目的在于统一同类业务属性的跨专业描述方式,实现管理口径的统一。在构建企业业务标签时,可遵循四条原则:

依托清晰完整的数据元素和数据关系,构建企业经营数据地图,实现数据伴随业务活动的实时自动记录,明确业务到价值的转化,可视化展示公司运营过程,精准识别数字化建设需求。

数据标准建立方式示例

02 开展业务流程改造,实现端到端数据贯通

在以企业财务为基础的数字化变革中,对业财链路的梳理贯通是实现数据赋能管理的重要“桥梁”。通过对财务、业务开展数据梳理和流程改造,对从业务源端到财务末端的每一个数据项的产生与流转过程规则进行清晰描述,利用数据间的继承关系再现实际业务发生过程,将各类环节的数据聚合到每一个管理对象。在此过程中,企业需要重点关注三方面的内容:

03 丰富数据应用场景,以灵活输出赋能管理

通过数据洞察,构建多场景应用实践,聚焦增量效益,以业务行动实现业务创新和管理变革。以灵活的输出方式,深挖数据的意义和价值,在数据的积累和验证过程中形成多层次、多领域、多场景的业务实践。以价值信号驱动管理行为变革,从效率、效益、创新和共赢四个方面引导价值创造。

对企业运营进行精准刻画,根据不同场景信息需求对数据进行灵活加工。以多频道报表及应用场景为媒介,对各类基础数据和动态数据进行分析比较,提供量化评价,智能优化信息输出,服务于管理决策和业务决策。围绕企业业务发展、资产管理、客户服务、组织激励等管理领域,通过价值数据和业务数据的聚合分析,为公司管理层以及各业部门提供高效透明的数据服务,实现从业务动因入手,推动精准评价、精准投资、精准激励,提升对企业经营的敏锐洞察和高效决策能力。

构建应用场景一般遵循以下五个步骤:

1 明确场景需求: 确定应用场景需要服务的部门和人员,明确业务需求及场景应用预期成效;

2 设定应用主题: 明确应用场景的目标和主要内容,识别应用场景用于建设或服务的重点、要点;

3 澄清数据源: 梳理应用场景中涉及的业务流程,澄清场景所需数据类别、计算方式、数据源系统及相应的业务逻辑关系;

4 确定输出方式: 明确应用场景成果的线上或线下输出及展示形式,制定场景未来的实施规范及迭代规则;

5 建立数据服务: 根据应用场景要求梳理数据链路信息,通过平台或系统调用并分析相关数据,建立场景服务能力。

在数据标准重构的过程中,企业能够实现“三项转化”。一是由“数据”到“信息”的转化,解码数据背后的管理信息,形成更完整的现状描述;二是由“信息”到“洞见”的转化,挖掘信息背后的提升价值,开展更科学的预测分析;三是由“洞见”到“行动”的转化,以数据价值赋能决策,为企业提供更智能的决策建议,助力业务管理提升。

深入洞察数据实现的“三项转化”,使企业能够有效应对数据获取、数据融合、数据赋能面临的困境,实现由“业务各说各话”到“统一数据语言”、由“数据拼凑汇集”到“数据高度融合”、由“管理业务数据”到“数据赋能管理”的数字化转型。

01 深化数字包容,打造文化认同

无论何时,任何企业的变革转型都需要以文化认同为基础。唯有组织上下对变革理念都采取包容接受的态度,将数字化的理念深刻融入企业发展的文化血液中,方能由“被动”化为“主动”,以内生动力推动转型可持续发展。企业要将数字化转型作为发展战略的一部分进行深入部署,制定适宜且明确的战略、顶层设计和路线图,在各层级单位、业务部门、员工间宣贯普及,增强企业人员在数字化建设中的参与感,加强对转型实效的体验,并引导人才团队打造数字化技能突破口。

02 规范数据管理,强健数据信息

部分企业存在诸如数字线上化程度较低、数据源质量不高、 历史 数据离线化碎片化、数据库管理范性较差等情况,这些问题成为数据获取和管理方面的瓶颈,限制了企业更高层次、更高质量的数据应用。对于这些企业的数字化转型,可建立数据统一管理机构,强健数据基础,规范数据标准,全面开展 历史 数据规范治理,减少对基础数据和绩效指标的人为干预,保障数字化转型的顺利实施。

03 促进业务融合,立足全局视角

部分组织结构较为庞大复杂的企业可能存在诸如部门间沟通协调较为困难、数据共享流程复杂、内容局限、数字化与业务融合程度较低等问题,企业需要将“加强业务间融合协作”作为数字化转型的重点,推进组织内部的横向和纵向贯通,打破专业间的壁垒,构建融合、共享、协同、高效的管理体系。通过业务融合削弱企业内外部资源流动的阻力,对内打破专业壁垒,对外拓展事业边界,形成全局、全行业视角。

04 加强数字应用,布局 敏态 运营

在传统生产要素价值创造增长模式趋于稳定的情况下,充分挖掘知识和数据要素的巨大发展潜力,并拓展价值创造维度成为了管理提升的突破口。企业可以考虑建立深入、立体、完善的数据管理应用体系,不断迭代提升数据计算分析方法,深挖拓展各类场景应用,促进质效改善及管理提升。并逐步以点带线,以线带面,最终将数据资产的价值创造能力延伸到整条价值链、产业链,助力企业数字生态网络的核心能力赋用。

05 深化人才管理,锻造专业队伍

目前,部分企业数字化转型中的人才瓶颈问题仍然比较突出。企业中具备大数据分析和数据统计分析专业技能的人才较少,且来源渠道不足。针对这一现状,企业要实施可持续发展的技能培训和人才战略,积极引进数字化人才,深化企业员工干部队伍能力重塑,强化重点专业领域人才培养,优化员工队伍人才结构。除关注内部人才培养之外,企业也可以引入外部专业服务力量,快速学习、应用行业领先的观念技术和管理实践,内外兼修,共同锻造一支有能力实施数字化转型的专业人才队伍。

数字化转型将是未来5-10年间重要的管理变革方向,对企业而言机遇和挑战并存。一方面,数字驱动革新为企业克服自身内部发展阻力并促进管理提升提供契机;另一方面,转型并不能一蹴而就,其长期性和复杂性要求企业在组织、技术、文化、管理等方面进行全方位的调整。在持续深入打造数字化的进程中,如何 探索 适应企业自身发展的路径,如何实现数据信息的有效聚合,如何满足数字化管理对组织内员工水平、技术能力和运营能力提升的诉求,都需要不断 探索 实践。“神而明之,存乎其人”。转型浪潮中,企业对于变革的信念、坚持与飞速进步的技术必将迸发出蓬勃的活力,走出独到而创新的数字化之路。

本文是为提供一般信息的用途所撰写,并非旨在成为可依赖的会计、税务、法律或其他专业意见。请向您的顾问获取具体意见。


欢迎分享,转载请注明来源:内存溢出

原文地址: http://outofmemory.cn/dianzi/10427934.html

(0)
打赏 微信扫一扫 微信扫一扫 支付宝扫一扫 支付宝扫一扫
上一篇 2023-05-08
下一篇 2023-05-08

发表评论

登录后才能评论

评论列表(0条)

保存