1、车联网
车联网行业中,车载智能终端、车载扫码支付设备、行车记录仪、车载综合监控/DVR。车载设备借助物联卡,流量卡实现车与车、人、路、平台之间的联系。
2、智慧物流
智慧物流是指物联网用于物流行业,在物流的运输、仓储、包装、装卸、配送,大大降低了物流运输成本,提高运输效率,在物流中的运用大致是这四个方向:仓储管理、运输监测、冷链物流、智能快递柜。
3、智能穿戴
智能穿戴其实就是指智能手表、智能手环、智能眼镜等,物联网卡是智能穿戴行业不可或缺的一部分。
4、智慧城市
智慧城市是未来城市发展的方向和趋势,通过物联网、云计算、大数据、空间地理信息集成等智能计算技术的应用,使得城市管理、教育、医疗、交通运输、住宅等更互联、高效和智能,人们可以随时随地享受到便利的生活。
5、智能安防
安防是物联网的一大应用场景,智能安防主要包括三大部分,智能门禁、报警系统、监控系统,行业中主要以安防监控为主。
6、智慧农业
将物联网技术运用到农业中去,使传统农业更具“智慧”,从而实现农业无人化、自动化、智能化管理。
7、智慧医疗
安全健康也是我们非常关心的问题,物联网技术在医疗行业中有着极大的作用,物联网卡将设备进行连接,实现信息实时采集和稳定传输数据,对医疗行业的服务水平和效率有着积极的促进作用。在医疗中的运用大致是这两个场景:可穿戴医疗设备、数字化医院。
物联网技术的应用如下:
智慧城市管理就是要利用物联网、移动网络等技术感知和使用各种信息,整合各种专业数据,建设一个包含行政管理、城市规划、应急指挥、决策支持、社交等综合信息的城市服务、运营管理系统。
智慧城市管理运营体系涉及公安、娱乐、餐饮、消费、土地、环保、城建、交通、水、环卫、规划、城管、林业和园林绿化、质监、食药、安监、水电电信等领域。还包含消防、天气等相关业务。以城市管理要素和事项为核心,以事项为相关行动主体,加强资源整合、信息共享和业务协同,实现政府组织架构和工作流程优化重组,推动管理体制转变,发挥服务优势。
智慧医疗利用物联网和传感仪器技术,将患者与医务人员、医疗机构、医疗设备的有效地连接起来,是的整个医疗过程信息化、智能化。智慧医疗使从业者能够搜索、分析和引用大量科学证据来支持自己的诊断,并通过网络技术实现远程诊断、远程会诊、远程会诊、临床智能决策、智能厨房等功能。
同时,它还可以惠及医生,整个医疗生态系统的每个群体(如医学研究人员、药品供应商和保险公司)。建立不同医疗机构之间的医疗信息集成平台,整合医院之间的业务流程,共享和交换医疗信息和资源,跨医疗机构还可以实现网上预约和双向转诊,这使得社区的“小病”社区、大病住院、社区居民的康复就医模式成为现实,极大地提高了医疗资源的合理配置,真正做到了以患者为中心。
物联网的典型应用有智能交通、环境保护、政府工作、公共安全等。
物联网是指通过各种信息传感器、射频识别技术、全球定位系统、红外感应器、激光扫描器等各种装置与技术,实时采集任何需要监控、连接、互动的物体或过程,采集其声、光、热、电、力学、化学、生物、位置等各种需要的信息,通过各类可能的网络接入,实现物与物、物与人的泛在连接,实现对物品和过程的智能化感知、识别和管理。
物联网有许多广泛的用途,遍及智能交通、环境保护、政府工作、公共安全、平安家居、智能消防、工业监测、老人护理、个人健康、花卉栽培、水系监测、食品溯源等多个领域。
物联网的基本特征:
它是各种感知技术的广泛应用。物联网上部署了海量的多种类型传感器,每个传感器都是一个信息源,不同类别的传感器所捕获的信息内容和信息格式不同。传感器获得的数据具有实时性,按一定的频率周期性的采集环境信息,不断更新数据。
它是一种建立在互联网上的泛在网络。物联网技术的重要基础和核心仍旧是互联网,通过各种有线和无线网络与互联网融合,将物体的信息实时准确地传递出去。在物联网上的传感器定时采集的信息需要通过网络传输,由于其数量极其庞大,形成了海量信息,在传输过程中,为了保障数据的正确性和及时性,必须适应各种异构网络和协议。
物联网应用案例
用途范围
物联网用途广泛,遍及教育、工程机械监控、建筑行业、环境保护、政府工作、公共安全、平安家居、智能消防、环境监测、路灯照明管控、景观照明管控、楼宇照明管控、广场照明管控、老人护理、个人健康、花卉栽培、水系监测、食品溯源、敌情侦查和情报搜集等多个领域。
展望未来,物联网会利用新一代IT技术充分运用在各行各业之中,具体地说,就是把传感器、控制器等相关设备嵌入或装备到电网、工程机械、铁路、桥梁、隧道、公路、建筑、供水系统、大坝、油气管道等各种物体中,然后将“物联网”与现有的互联网整合起来,实现人类社会与物理系统的整合,在这个整合的网络当中,拥有覆盖全球的卫星,存在能力超级强大的中心计算机群,能够对整合网络内的人员、机器、设备和基础设施实施实时的管理和控制,在此基础上,人类可以以更加精细和动态的方式管理生产和生活,达到智慧化管理的状态,提高资源利用率和生产力水平,改善人与城市、山川、河流等生存环境的关系。
具体应用案例
下面列举了集中具体的应用案例,以供参考
1. 教育物联网
应用于教育行业的物联网首先要实现的就是,在适用传统教育意义的基础之上,对已经存在的教育网络中进行整合。对教育的具体的设施,包括书籍、实验设备、学校网络、相关人员等全部整合在一起,达到一个统一的、互联的教育网络。
物联网产业需要复合型人才,至少具备四方面的特征,包括掌握跨学科的综合性的知识与技能、掌握物联网相关知识与技术、掌握特定行业领域的专门知识以及具备创新实践能力。目前国内已有30余所大学开设了物联网专业。有超过400所高校建立物联网实验室。
2工程机械物联网
“工程机械物联网”是借助全球定位系统(GPS)、手机通讯网、互联网,实现了工程机械智能化识别、定位、跟踪、监控和管理,使工程机械、 *** 作手、技术服务工程师、代理店、制造厂之间异地、远程、动态、全天候“物物相连、人人相连、物人相联”。
工程机械物联网目前应用广泛。以NRS物联网智能管理系统平台为例,提升原本工程机械物联网服务由“信息采集服务”向“数据咨询服务转变”。由原来的现场管理升级为远程监控,由传统的制造转变为制造服务,由原来的被动服务提升为主动服务。功能涉及信息管理,行为管理,价值管理三大方面。
信息管理:
区域作业密集度管理
故障预警及远程诊断
车辆运维主动式服务
金融按揭安全性服务
行为管理:
作业人员统计管理
作业工时效率性分析
行为与工效油耗分析
*** 作规范与工效分析
价值管理:
产品全寿命周期成本管理
行为与员工绩效管理
量本利敏感要素判断
多维大数据决策支持
以福田的农机信息管理平台为例,可以对农业所需相关机械车辆进行全球GPS定位、锁车、解锁车、设备工时查询、故障报警等 *** 作,这对促进农业生产,提高工作效率有着至关重要的作用。
3建筑行业物联网应用——塔机监控
塔机智能化的监控管理系统,主要针对检测状态、危险距离预警、故障诊断、信息回传、工程调度等方面工作。例如塔机下面危险区域禁止站人实时提示、与其他高空建筑物距离过近、超出安全距离范围、内部故障预警、诊断、实时显示额定载重量、当前风速、回转角度、当前载重等。
4建筑行业应用——商用混凝土搅拌站
对生产设备的远程诊断和远程维护已经成为当前自动化技术中的一部分。尤其对于那些错误容易诊断和容易排除的情况,派一个服务工程师到现场解决,既增加工程师的工作负荷,又花费时间。而且费用也相应增加。为了缩短故障的诊断与恢复时间,提高有经验的高级工程师的工作效率,那么远程诊断和编程就是必备的部分。例如:“商用混凝土搅拌站产品远程售后服务系统”,可以在远程实现对PLC站进行编程和调试。可是实现混凝土搅拌站的远程控制和数据监控。
值得一提的是三维虚拟仿真技术在物联网的应用,给商用混凝土搅拌站的物联网应用开创了新的时代。系统实现搅拌站与车辆实时运行状态模拟功能。以动画形式呈现搅拌站实时动态信息,其中可包括:工程名称、施工配比、搅拌站配料情况及其他原材料配料情况,搅拌站场景如下图所示。
5石油
石油行业物联网系统主要是使用监控设备和信息系统采集运输油轮数据、码头设备和环境数据、油库数据、原油管道数据等,对这些数据进行整理和分析,将原油运输各个环节的数据进行关联和分析,合理安排船期、实现计算机排罐,提高整个原油运输的效率,同时通过对相关设备和环境的监测,及时掌握设备运行情况,保证整个运输过程的安全可靠。
石油行业物联网系统的总体解决方案包括:油库监测系统、原油管道监测系统、原油管道无人机巡线系统等。
6水利
物联网在水利方面的应用主要是对闸门的液压启闭机的状态检测、远程控制、故障预警等,利用水下机器人对大坝、水库等水下状态进行状态监控、信息回传等工作。
例如:“远程信息服务系统”能够通过智能信息采集终端,将液压启闭机PLC控制器的控制信息通过物理端口(串口)采集到终端,然后通过GPRS通讯模块,利用2G/3G网络或者互联网络将信息传递到远程WEB服务器,使得远端管理人员能够实现远程感知闸门启闭的运行信息。
7城市物联网
城市物联网利用互联网的信息管理平台、二维码扫描、GPS定位等技术,是更贴近人们生活的一种应用,现在变得更加的直观。比如儿童和老人的行踪掌控、公路巡检、贵重货物跟踪,追踪与勤务派遣、个人财务跟踪、宠物跟踪、货运业、各类车辆的防盗等GPS定位、解锁车、报警提示应用。
针对环卫车辆可以对车辆进行实时进行的GPS定位、状态监控、车辆信息查询、运行状态等工作,例如:需要知道目前城市的某区有多少环卫车辆,处于什么哪个街道, *** 作员,工作情况,计划任务等,同时又可以根据实际情况进行工作调度,对故障做提前的预警,对突发情况应急处理,对重要的问题着重处理等。
8.农业物联网
农业物联网的应用比较广泛的是对农作物的使用环境进行检测和调整。例如:大棚(温室)自动控制系统实现了对影响农作物生长的环境传感数据实时监测,同时根据环境参数门限值设置实现自动化控制现场电气设备,如:风扇、加湿器、除湿器、空调、照明设备、灌溉设备等,亦支持远程控制。常用环境监测传感器包括:空气温度,空气湿度,环境光照,土壤湿度,土壤温度,土壤水分含量等传感器。亦可支持无缝扩展无线传感器节点,如:大气压力、加速度、水位监测、CO、CO2、可燃气体、烟雾、红外人体感应等传感器。
9智能家居
这方面的应用就更加的贴近人们的生活,这是关系到人们生活起居、与生命安全息息相关的应用,我们可以通过智能家居的物联网络,进行室内到室外的电控、声控、感应控制、健康预警、危险预警等,比如声控电灯、窗帘按时间自动挂起、感应器感应到煤气泄漏、空气污染指数过高、室内的光线被家具遮挡严重、室内家居摆放设计、马桶漏水、电量煤气不足报警、车库检测、室外摄像检测、未来天气预测、提醒带雨伞、生活备忘录电子智能提醒等多方面的功能应用。
物联网的应用实例与效益 摘要 十年前,麻省理工学院在同 EANUCC 组织(全球统一标识系统)共同进行一 个研究项目时,创造了"物联网"一词该项目和全球产品电子代码管理中心的 成立促生了以 RFID 为基础的解决方案, 使供应链发生了革命性的变化 据预测, 到 2005 年,RFID 标识的物体和物联网将会无处不在 物联网的开发是围绕 RFID 的应用进行的,然而依托的技术不仅仅是 RFID物 联网的合理结构是金字塔型的,是根据需要,合理性,局限性和商业应用案例和 效益在身份标识,数据存储和能力上结构分层的,其合理性取决于经济效益,其 特点和行为设计的合理性也取决于实际效益 目录 1 介绍 十年前,麻省理工学院(MIT)与物品编码组织 EANUCC 共同开展了一个研究项 目,创造了物联网一词该项目和全球产品电子代码管理中心的成立促生了以 RFID 为基础的解决方案, 使供应链发生了革命性的变化 采用这种技术和手段, 将使供应链成本降低 10%,还能使我们同家庭中的日常生活物品相互交流在我 们去超市的时候,家里的冰箱会告诉我们缺少些什么,食品自己会告诉我们它们 什么时候过期,商品会自行防盗,我们则不必在超市的收款台前排队这些有说 服力的例子那时让我们预测, 2005 年, 到 RFID 标识的物体和物联网会无处不在 但现在已经 2009 年已经过去了,但我们还在等待会发生些什么为什么我们还 在等待呢物联网的实际效益在哪里呢 从社会经济方面看,保健,环境,合法监听,隐私,安全,技术的获取和包容 以及政府的作用,都将影响到物联网的应用,但未来物联网推广的最重要因素是 商业案例没有商业案例就没有商业 关于物联网的争论,一般是围绕着什么时候技术才会无处不在和遍布各处的问 题进行的,没有考虑如果实现了技术无所不在,那么范围有多大,哪些技术是核 心的问题本文用商业案例推理方法进行讨论,并向一些物联网方面的基本假设 提出了挑战,本文的结论是,物联网的架构实际上与现在的一些假设是不同的, 它更具结构性,更实用,具有金字塔式的通信能力和选择能力,它不是一堆放在 一起通过 RFID 器件互相谈话的物体 2 物联网的概念 MIT1999 年的论文在其网站上已经保留好多年了 所说的"物联网"是"自 MIT 动身份识别中心的愿景", 这个愿景就是创造一个计算机无需人的帮助就能去识 别的全球环境 麦克法兰在上述论文中解释了基于控制的 MIT 自动身份识别的概 念他说: 智能产品是一种物理的,以信息为基础的零售商品,它们 (1)具有独特的身份; (2)能够有效地同周边环境交流; (3)能够保留和存储自己的数据; (4)具有能描述产品特点,生产,使用和处置需求的语言; (5)能持续地参与或决定与产品命运相关的行为 重要的是要注意到,MIT 的研究是针对供应链的,它说的"每个东西都贴上标 签"并不意味着"所有的东西"都贴上标签麦克法兰说的很清楚,它们是以信 息为基础的零售商品花园里的鼹鼠,树上的知更鸟和亚马逊雨林中的树木并不 在这"每样东西"的范畴之内他们所做的切合实际的排除表明,物联网的初始 概念是很清楚的, 是人为限定的, 是有范围的 它只适应于供应链上传送的东西 全球产品电子编码管理中心和 RFID 产业已经认识到, 这种限制会使我们错失良 机,降低物联网的应用范围和影响这与"计算机无需人的帮助就能理解世界" 的概念显然是不相符合的,因为我们不能假定每样东西都是零售商品,这种假定 是不可能的,而且永远不可能现在是根据可能做到的事情重新评价和建立这个 概念的时候了 要建立全面的或局部的物联网,需要有投资,在很多情况下,这种投资的规模 很大只有有了适宜的商业范例,才会有投资而商业范例正是目前所缺少的 3 商业范例假设 物联网不仅是一个学术概念,而且有市场需求,了解这一点是至关重要的 这就是说,物联网是一种真正的颠覆性创新,它能对社会产生巨大影响但物 联网要获得成功, 必须要有实实在在的应用案例, 不能光宣传它如何如何了不起, 或觉得它会带来多大的股票价值 物联网的推广目前还受限于技术,现在可用的技术是 RFID 过去在供应链和其他一些商务模型如资产管理中主要采用一维条形码, 这是 一种综合标识符,不能区分具体的物品两维条形码含有更多的数据,但一旦印 刷上去, 就不能更新 RFID 发射器, 近场通信移动电话, 采用脉冲无线电 (UWB) 通信技术的定位系统, 蓝牙或紫峰无线传感器和其他一些无处不在的计算技术能 持续地从周边环境中采集数据并进行处理, 这些技术可以带来优势的商业应用案 例 虽然物联网的开发是围绕 RFID 的应用进行的, 但构成物联网的是连续和密集的 实时数据流,并不是 RFID 器件本身,物联网是物理世界的反映,同物理世界一 样,物联网用户市场中商务案例的成功是商务推广的先决条件 1999 年开始建立物联网时,MIT 预测,到 2005 年会出现物联网 RFID 标签的无 处不在的应用,到 2006 年,标签的价格会降低到 5 美分学术界的预测总是太 过乐观,从经济学的角度看,这个预测其实是靠不住的 当然,MIT 可以很有道理地指出,今天的标签,比他们当时设想的标签要复杂 多了,但标签设计中任何增加的功能都是用户需要的,没有这样的进步,就没有 投资的效益但价格毕竟决定着设计的合理性,限制着标签的普及应用 如果没人以 MIT 预测的价格大量购买这些标签,就不会有用户应用案例 MIT 所描述的物联网是在超市中无处不在地使用标签,MIT 预计,所有的零售商 品都会贴上标签, 所有的家庭用品和办公用品都会贴上标签, 它们能够相互通信, 至少在询问时能够应答 2003 年,威廉姆斯在《产品标识的未来》一文中指出,当商店中的商品以低于 05 美元的价格促销时,标签的成本无论是 028 美元还是 5 美分,都将是极大 的成本负担,一般会使商品利润低于 10%,在这个价格水平上使用 RFID 标签就 不划算了现在不行,永远都不行把 MIT 所预测的标签价格下降(为达到市场 普及)同预测的标签使用量相比较,可以看出,在很多年内,标签的整体商业价 值很难增长标签厂商投入很大的资金,承担很大的风险,卖出几十亿的标签, 却只能赚到很少的钱标签厂商以现在的价格每年只卖出几百万个标签这种商 业模式是行不通的,而且永远行不通,因为标签制造厂商在目前商业模式的生命 周期内是不会把标签的价格降低到微不足道的水平的 业界预测,聚合物 RFID 标签有可能在 10 年内改变这种状况但是今天你不可 能根据 10 年之后可能发生的事举出商业应用的例子这些实际因素对物联网的 建立和效益的发挥有巨大的影响也就是说,在每件物体上贴上标签,也许只是 一种空想,永远不可能成为现实(我曾经说过,皇帝是没有新衣的) 那么物联网的概念是不是就错了,是不是就一无可取了呢我希望不是尽管人 们提出的物联网的概念和架构有某些缺陷,但它还是有很大的潜在效益的 4 物联网依托的技术不仅仅是 RFID 在可预见的未来建立可行的物联网架构是至关重要的那种认为给遍布各处的 每个物体都贴上 RFID 标签就能形成物联网的观点是经不起实践检验的,是不会 有商业应用实例的在目前阶段,我们必须质疑关于物联网的一些基本假设麦 克法兰提出的物联网概念,至少有两点是站不住脚的,是经不起实践检验的 首先,麦克法兰声称的物联网的目标是"建立一个计算机无需人的帮助就能识 别世界的普遍环境",但他没有从商业应用的角度进行考虑,也就是说,人们为 什么需要这样一种环境我们的问题是,它的应用合理性在哪里难道就因为它 在技术上可行就不去考虑合理和需求吗 如前所述,不是器件,而是连续的,高密度的实时数据流形成了可行的商业应 用案例,赋予了信息系统相关的,实时的,具体的数据,建立了物联网我们必 须清楚地认识到,物联网的商业范例不是 RFID 器件的商业范例,而是合理获取 信息的商业范例,RFID 系统只是一种提供信息的手段,是一种最适宜的,成本 效益最高的技术 第二,对于早先的智能产品概念,麦克法兰虽然提出了 5 个特点,但缺少商业 案例的支持麦克法兰说的 5 个特点是,独特的身份标识,与周边环境交流,存 储数据,使用标准的语言和不断地参与或决定自己生命周期 最后一个特点是要赋予器件智能的原因,其他一些特点是被动存储器件也具有 的,只要它们能被连接 如果你接受这种观点,那么在很多情况下,有效地与周边环境通信,可能就简 单意味着使身份和数据可以被询问, 而这通过被动型的数据存储就能实现 的确, 早期物联网构想中的 RFID 技术,全部是被动型 RFID 标签,这些标签只有在被询 问时才能显示数据,与条形码唯一的不同是,它们的数据存储在集成电路存储器 上,可以被更新,它们不能对自己的命运做出决定所以,麦克法兰的理论不仅 没有清晰的商业案例支持,而且其初始概念在逻辑上就讲不通我们经过思考后 得出的结论是,有些物品需要通信,而另一些物品只需要被询问,有些数据是永 存的,另一些数据是变化的这个结论显然是毋庸置疑的 独特的身份对于物联网来说是非常重要的,但也需要从商业效益的角度考虑问 题多年来,条形码成功地标识了批量身份,但不能标识每个产品的身份把批 量标识扩展到分类标识是必要的,例如标明整批货物中每一件的售出时间但如 果没有必要,如果成本太高,就不需要总是这样做当然在有些情况下,是需要 对每个商品做独特标识的,例如商品的重量,历史等所以,物联网的许多功能 是可以用比较便宜的技术实现的,例如已广泛应用的条形码我们认为,物联网 的合理结构是金字塔型的,是根据需要,合理性,局限性和商业应用案例和效益 在身份标识,数据存储和能力上结构分层的将来许多物品的信息仍然会保存在 条形码上 现在的条形码仅仅是标识类别, 例如某厂商生产的 450 克的烤豌豆 如果用条形码区别标识每件产品, 就不能像现在这样把条形码统一印刷在产品包 装袋上,把这样的产品纳入物联网中,需要确定数量并判断投入的合理性 在每个产品上应用 RFID 技术现在有很好的例子例如,英国著名的玛莎百 货公司用这种技术减少了正品商品退货的欺诈率,在这种情况下,商品价格稍高 一点是合理的另一个例子是在刮脸刀片上安放防盗窃的电子商品监测 EAS/RFID 标签,从商业效益上看也是合理的按日期销售的信息是非常重要的 信息,新鲜食品可以在物联网世界中找到新的市场机会,可以存储在零售商的货 架上, 可以找到潜在的家庭和办公室最终用户, 也可以找出产品的新特点和用途, 让产品销售的压力不全放在既定用户身上,另外还能给冰箱制造商做广告,促进 冰箱的销售在物联网世界中,市场营销也能产生实实在在的效益,消化 RFID 的成本 例如, 葡萄酒和灌装啤酒的厂商由于与销售市场更接近, 可以降低价格, 从而消化标签的成本不过我们必须做出示范例子,才能在物联网中推广 5 物联网的结构 如果你接受现在的观点,那么就会顺理成章地得出这样的结论,即只有需要 通信的东西才会装上通信器件在上述金字塔的顶端,是人与人之间的对等机器 交流,例如我的个人数字助理和你的计算机之间的交流,在采用对等设备成本上 不划算的地方则布置 RFID 标签,因为 RFID 标签是满足基本通信需求的成本最 低的手段, 这是第二个层次, 在这个层次之下, 是被动型的数据存储, 如条形码, 它只能保存数据和身份,在这个层次,很多东西仍然是不可辨认和不可识别的 我们定义的未来的物联网还有一点与麦克法兰的提法不同,麦克法兰认为, 物体"能连续地参与和决定自己的命运",我们则认为,只有在感知物体直接或间 接地发出指令的时候(在金字塔的顶端) ,或智能物体发出指令的时候(在第二 层次) ,才会有通信即便在第二层次,智能物体一般也是由一个感知器件控制 和预先决定的(在物联网中,所有的东西,包括人,都是物体) ,因为只有更高 的层次,才能做出判断效益的决策 所以,物联网是在一个个案例的基础上运行的,由感知物体从成本上逐个判 断,处理代价是否能适合需求,物联网是由这些案例构成和限制的 物联网中的商务案例是靠 RFID 标签,智能标签或智能卡运行的静态信息 如产品身份,重量,售出时间,产地等,可以存储在条形码上,也许是两维条形 码,用移动设备和漫游设备可以阅读条形码 我们不需要给每个物体都装上主动通信的器件, 我们要做的是提高阅读器扫描被 动信息的能力,如扫描条形码,使我们在询问时能获得信息,这样做是因为我们 有应用案例的强大支持我们很多人已在超市使用自我扫描技术付账了,许 多移动电话都能阅读条形码虽然让冰箱通过 RFID 标签自动向超市询问存货和 自动付账听起来很有吸引力, 但其实还有一些更为廉价的方法能达到同样的效果 许多此类物联网可以用手动扫描条形码的方式实现,例如,用扫描器把冰箱 里的食品显示在冰箱上的屏幕上屏幕上还可以显示食品的售出时间,发出过期 报警如果超市的付账柜台上也储存有售出日期的信息,就可以用现在的 Wi-Fi (无线保真)技术把这些信息传送到用户的个人数字助理和电话上,用户的冰箱 上或家庭电脑上,也可以传送到家里各处放置的,不见得放在冰箱里的已购买的 食品上 我们所提出的物联网的架构是这样的,它并不是把世界上所有的物体都以对 等的方式连接在一起,而是给有些物体贴上 RFID 标签,有些物体贴上条形码 在我们的物联网架构中有些物体有询问能力, 还有些物体则仍然处于未连接状态 物联网的主要功能是处理信息,这些信息的获得并不完全靠 RFID 标签当 然 RFID 标签将会发挥作用,但 RFID 提供的信息只是物联网的一个组成部分 在物联网中, 不是简单地给每件物体都做出身份标识 我们把物品分成了若干类, 这种分类构成了前述的金字塔梯级结构, 每个梯级采用的信息获取和发送技术都 是不同的也许我们可以给出这样的梯级结构: A 级:带有一般的固定静态数据的物品(如一听西红柿) B 级:带有分类静态数据的物品(如标有售出日期的生菜) C 级:带有独特的固定静态数据的物品(如标有特别分量,产地和保质期的一片 肉) D 级:带有可变综合静态数据的物品(如带有温度感应器的冷冻食品综合标识包 装) E 级:带有可变分类静态数据的物品(如运载箱装商品的货盘) F 级:带有一般临时静态数据的物品(如卡车载的货) G 级:带有可变独特静态数据的物品(道路通行费标签;带有温度感应器的独特 标识的物品) H 级:带有分类可变数据的物品(如车辆) I 级:带有特殊可变数据的物品(如冰箱,音响系统,中央空调,房间报警系统, 车辆等) J 级:智能物品(如计算机,个人数字助理) K 级:有感知的物体(例如人) 这样的分类,是按本文的思路提出的,并不能算是正式的分类下图所示为 物联网的金字塔架构: 我们并不打算把世界上的每个物体都标识在这个金字塔架构图中世界上的 大多数物体—田野里的树木,沙滩上的躺椅,树上的鸟儿等都是不需要通过物联 网来交流的在可预见的未来,现实世界中的大多数物体都不会连接在一起在 物联网中,我们可以把这些物体称为未标识类物体 从金字塔的底部上行, 我们会发现, 紧邻底层 A 的那几个层次中的物体可以被识 别,但是被动式的,这些物体被询问是可以应答,但不能主动通信B,C,D 层次中的物体一般是用条形码标识的,B 层次是简单的综合标识,例如一听西红 柿C 层次是类似瓜果梨桃一类的物品,它们往往有同样的身份,但售出日期不 同 层次的物品是有单独特点的, D 例如每个产品都有不同的重量 在物联网中, 我们可以把这一层次中的物品叫做被动可标识物品增加的信息都不是特殊的, 产品的重量是不变的这一层次中使用的 RFID 标签都是被动型标签 E 层次的数据来自传感器,传感器是被动的,在询问时可以应答,但如果某 些参数(例如温度)超出了规定的限度,也能主动通信,我们把 E 层次的物品叫 做具有激发通信能力的物品, 当然只有在成本效益合理的情况下才采用这种技术 这些物品的数据可变但也是被动的,不过与 D 层次中的可变被动数据(例如一 公斤香肠)完全不同 D 层次和 G 层次的物品都有组合的数据,D 层次中是综合的可标识物品,G 层次中的是特殊的可标识物品例如,道路通行收费标签可在车辆行程的入口和 出口被读出 这两个层次的物品一般不能通信, 它们往往是被询问时才做出反应, 但不能排除它们具有通信功能我们把这种物品叫做"载有其他物品数据的物品" H 层次的物品则不仅有独特的身份,而且有独特的寻址功能,它们能主动通信, 也能对询问做出反应,可能还可以处理大量的瞬间变化数据智能汽车就是一个 例子我们把这个层次的物品叫做"为其他物品服务的物品" 在金字塔的顶端,是真正的智能器件,如计算机或有感知的物体(例如人) , 这些物体有能力主动通信和主动询问 智能物体和感知物体之间的根本区别在于, 智能物体的运行决定是由感知物体控制的,或者说,智能物体的行为是由感知物 体(例如人)设定的所以,在物联网金字塔的顶端,总是感知物体在控制,不 是物品自己做自己命运的决策这种理解与 MIT 最初的概念是根本不同的我 们认为,只有采用这种梯度层次架构,物联网才能产生合理的实际效益,才能获 得投资 我们当然可以做出不同的分类,分出不同的级别,但问题的关键不在这里 关键是物联网不会,而且永远不会成为和人与人之间的网络一样的,具有自主意 识的网络(采用 RFID) ,物联网将是一个由具有不同特性和能力的物品组成的一 个梯度分层架构;它的性质是由应用案例和实际效益决定的,采用的技术是否合 理也是由实际效益决定的(有时只能用 RFID) 所以,在物联网中采用 RFID 的具体效益是反映在多个结构层次上的,其合 理性取决于济效益,其特点和行为设计的合理性也取决于实际效益(尽管可 能会有额外的下游效益,或以后会发现效益,但这不属于初始的效益) 物联网 中物品能力的合理性也是由具体的效益决定的 物联网本身是不会产生什么奇幻 的济效益的,世界上的许多物品将仍然处于物联网之外 6 结论 为发挥物联网的潜在效益,需要着重注意新型的因特网和已有数据的 *** 控,而 数据的传输技术,虽然很重要,却是次要的考虑因素需要制定物品层次之间交 流的规则,需要开发数据采集/交换/交易的网络服务如果物联网有一天真的出 现了,那么首先要关注的是数据管理,转换和处理的标准,而不是什么特殊的空 间接口总之,尽管 RFID 在物联网中有重要作用,但它毕竟只是物联网中的一 种数据传递技术,要形成商业市场,就要开发产品(软件系统) ,使因特网中的 物品能动起来,我们要更多地关注使物联网具有交流功能的网络服务我们需要 有标准化的服务标准制定组织,如 CEN,ISO,ETSI,应发挥重要作用欢迎分享,转载请注明来源:内存溢出
评论列表(0条)